984 resultados para Exatas e da Terra
Resumo:
We report a theoretical investigation of thermal hysteresis in magnetic nanoelements. Thermal hysteresis originates in the existence of meta-stable states in temperature intervals which may be tuned by small values of the external magnetic field, and are controlled by the systems geometric dimensions as well as the composition. Two systems have been investigated. The first system is a trilayer consisting of one antiferromagnetic MnF2 film, exchange coupled with two Fe lms. At low temperatures the ferromagnetic layers are oriented in opposite directions. By heating in the presence of an external magnetic field, the Zeeman energy induces a gradual orientation of the ferromagnets with the external field and the nucleation of spin- op-like states in the antiferromagnetic layer, leading eventually, in temperatures close to the Neel temperature, to full alignment of the ferromagnetic films and the formation of frustrated exchange bonds in the center of the antiferromagnetic layer. By cooling down to low temperatures, the system follows a different sequence of states, due to the anisotropy barriers of both materials. The width of the thermal hysteresis loop depends on the thicknesses of the FM and AFM layers as well as on the strength of the external field. The second system consists in Fe and Permalloy ferromagnetic nanoelements exchange coupled to a NiO uncompensated substrate. In this case the thermal hysteresis originates in the modifications of the intrinsic magnetic
Resumo:
In the present work, we have analyzed the behavior of the chromospheric activity of stars with planets, as a function of different planetary parameters, searching for possible effects of planets on the chromosphere of the hosting star. For this study we have selected a sample of 73 main sequence stars with planets, of spectral types F, G and K. Our analysis shows that among stars with planets presenting semi-major axis smaller than 0.15 AU, a few ones present enhanced CaII emission flux, paralleling recent results found in the literature for coronal X-ray flux. Nevertheless, in contrast to Kashyap et al. (2008), who claim that enhanced X-ray flux in stars with planets is associated to massive close-in planetary companions, we suggest that such an aspect, at least in the context of CaII emission flux, is rather an effect of stellar sample selection. We have also studied the behavior of the CaII emission as a function of orbital parameters such as orbital period and eccentricity, and no clear trend was found, reinforcing our present suggestion that enhanced chromospheric activity in stars with planets is an intrinsic stellar phenomenon
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB
Resumo:
In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient
Resumo:
The development of computers and algorithms capable of making increasingly accurate and rapid calculations as well as the theoretic foundation provided by quantum mechanics has turned computer simulation into a valuable research tool. The importance of such a tool is due to its success in describing the physical and chemical properties of materials. One way of modifying the electronic properties of a given material is by applying an electric field. These effects are interesting in nanocones because their stability and geometric structure make them promising candidates for electron emission devices. In our study we calculated the first principles based on the density functional theory as implemented in the SIESTA code. We investigated aluminum nitride (AlN), boron nitride (BN) and carbon (C), subjected to external parallel electric field, perpendicular to their main axis. We discuss stability in terms of formation energy, using the chemical potential approach. We also analyze the electronic properties of these nanocones and show that in some cases the perpendicular electric field provokes a greater gap reduction when compared to the parallel field
Resumo:
Neste trabalho, elaboramos e discutimos uma rede complexa sem escala, ou seja, uma rede cuja distribuição de conectividade segue uma lei de distribuição de potência. Nosso trabalho pode ser resumido da seguinte forma: Para efeito de didática vamos começar com redes aleatórias que estão relacionados com situações reais e artificiais, e depois comentar as redes livres de escala, como proposto por Barabási-Albert (BA). Depois disso, discutimos uma extensão deste modelo, onde Barabasi e Bianconi (BB) incluem a qualidade. Discutimos também o modelo de afinidade, ou seja, (Ver Almeida et al). Finalmente vamos mostrar o nosso modelo, uma extensão do modelo de afinidade dada por e apresentar os resultados correspondentes. Para realizar tal tarefa modificamos a regra de ligação preferencial do modelo de BB colocando um fator que apresenta o grau de probabilidade entre os sítios da rede. Esta quantidade é feita pela diferença entre a qualidade do novo sítio e a qualidade dos anteriores. Este novo parâmetro produz novos resultados interessantes: a distribuição que segue uma lei de especial de potência, expoente apropriado. A evolução temporal da conectividade do sítio também é calculada . Além disso, mostramos também, os resultados que foram obtidos, via simulação numérica, para o menor caminho médio e o coeficiente de agregação da rede gerada pelo nosso modelo, isto é, pelo modelo de afinidade.
Resumo:
The so-called gravitomagnetic field arised as an old conjecture that currents of matter (no charges) would produce gravitational effects similar to those produced by electric currents in electromagnetism. Hans Thirring in 1918, using the weak field approximation to the Einsteins field equations, deduced that a slowly rotating massive shell drags the inertial frames in the direction of its rotation. In the same year, Joseph Lense applied to astronomy the calculations of Thirring. Later, that effect came to be known as the Lense- Thirring effect. Along with the de Sitter effect, those phenomena were recently tested by a gyroscope in orbit around the Earth, as proposed by George E. Pugh in 1959 and Leonard I. Schiff in 1960. In this dissertation, we study the gravitational effects associated with the rotation of massive bodies in the light of the Einsteins General Theory of Relativity. With that finality, we develop the weak field approximation to General Relativity and obtain the various associated gravitational effects: gravitomagnetic time-delay, de Sitter effect (geodesic precession) and the Lense-Thirring effect (drag of inertial frames). We discus the measures of the Lense-Thirring effect done by LAGEOS Satellite (Laser Geodynamics Satellite) and the Gravity Probe B - GPB - mission. The GPB satellite was launched into orbit around the Earth at an altitude of 642 km by NASA in 2004. Results presented in May 2011 clearly show the existence of the Lense-Thirring effect- a drag of inertial frames of 37:2 7:2 mas/year (mas = milliarcsec)- and de Sitter effect - a geodesic precession of 6; 601:8 18:3 mas/year- measured with an accuracy of 19 % and of 0.28 % respectively (1 mas = 4:84810��9 radian). These results are in a good agreement with the General Relativity predictions of 41 mas/year for the Lense-Thirring effect and 6,606.1 mas/year for the de Sitter effect.
Resumo:
A posição que a renomada estatí stica de Boltzmann-Gibbs (BG) ocupa no cenário cientifíco e incontestável, tendo um âmbito de aplicabilidade muito abrangente. Por em, muitos fenômenos físicos não podem ser descritos por esse formalismo. Isso se deve, em parte, ao fato de que a estatística de BG trata de fenômenos que se encontram no equilíbrio termodinâmico. Em regiões onde o equilíbrio térmico não prevalece, outros formalismos estatísticos devem ser utilizados. Dois desses formalismos emergiram nas duas ultimas décadas e são comumente denominados de q-estatística e k-estatística; o primeiro deles foi concebido por Constantino Tsallis no final da década de 80 e o ultimo por Giorgio Kaniadakis em 2001. Esses formalismos possuem caráter generalizador e, por isso, contem a estatística de BG como caso particular para uma escolha adequada de certos parâmetros. Esses dois formalismos, em particular o de Tsallis, nos conduzem também a refletir criticamente sobre conceitos tão fortemente enraizados na estat ística de BG como a aditividade e a extensividade de certas grandezas físicas. O escopo deste trabalho esta centrado no segundo desses formalismos. A k -estatstica constitui não só uma generalização da estatística de BG, mas, atraves da fundamentação do Princípio de Interação Cinético (KIP), engloba em seu âmago as celebradas estatísticas quânticas de Fermi- Dirac e Bose-Einstein; além da própria q-estatística. Neste trabalho, apresentamos alguns aspectos conceituais da q-estatística e, principalmente, da k-estatística. Utilizaremos esses conceitos junto com o conceito de informação de bloco para apresentar um funcional entrópico espelhado no formalismo de Kaniadakis que será utilizado posteriormente para descrever aspectos informacionais contidos em fractais tipo Cantor. Em particular, estamos interessados em conhecer as relações entre parâmetros fractais, como a dimensão fractal, e o parâmetro deformador. Apesar da simplicidade, isso nos proporcionará, em trabalho futuros, descrever estatisticamente estruturas mais complexas como o DNA, super-redes e sistema complexos
Resumo:
The calcium ferrite (Ca2Fe2O5) has a perovskite-type structure with oxygen deficiency and is used as a chemical catalyst. With the advent of nanoscience and nanotechnology, methods of preparation, physical and chemical characterizations, and the technological applications of nanoparticles have attracted great scientific interest. Calcium nanostructured ferrites were produced via high-energy milling, with subsequent heat treatment. The milling products were characterized by X-ray diffraction, magnetization and Mössbauer spectroscopy. Samples of the type Ca2Fe2O5 were obtained from the CaCO3 and Fe2O3 powder precursors, which were mixed stoichiometrically and milled for 10h and thermally treated at 700ºC, 900ºC and 1100ºC. The Mössbauer spectra of the treated samples were adjusted three subespectros: calcium ferrite (octahedral and tetrahedral sites) and a paramagnetic component, related to very small particles of calcium ferrite, which are in a superparamagnetic state. For samples beats in an atmosphere of methyl alcohol, there is a significant increase in area associated with the paramagnetic component. Hysteresis curves obtained are characteristic of a weak ferromagnetic-like material
Resumo:
Considering a non-relativistic ideal gas, the standard foundations of kinetic theory are investigated in the context of non-gaussian statistical mechanics introduced by Kaniadakis. The new formalism is based on the generalization of the Boltzmann H-theorem and the deduction of Maxwells statistical distribution. The calculated power law distribution is parameterized through a parameter measuring the degree of non-gaussianity. In the limit = 0, the theory of gaussian Maxwell-Boltzmann distribution is recovered. Two physical applications of the non-gaussian effects have been considered. The first one, the -Doppler broadening of spectral lines from an excited gas is obtained from analytical expressions. The second one, a mathematical relationship between the entropic index and the stellar polytropic index is shown by using the thermodynamic formulation for self-gravitational systems
Resumo:
In the present study we compute the atmospheric parameters (Teff , log g and vmic, [Fe/H]) and chemical abundance of 16 ions (Fe I, Fe II, O I, Si I, Na I, Mg I, Al I, Ca I, Ti I, Co I, Ni I, Rb I, Zr I, Ba II, La II and Cr I) for 16 solar-like stars with masses between 0:8 and 1:2 Mfi aproximatedly, including 10 planet-host stars detected by the CoRoT Space Mission. For this study, we use data from the ESO public archive: (i) high resolution spectra (R 47000) from the UVES spectrograph on the VLT/UT2-ESO (for 7 stars, covering the wavelength range 3450-4515 Å and 5500-9400 Å) and (ii) high resolution spectra from HARPS spectrograph on the La Silla-ESO 3.60 m telescope (for 9 stars, covering the wavelength range 4200-6865 Å). Our spectral analysis is based on MARCS models of atmosphere and Turbospectrum spectroscopic tools. On the base of the computed parameters, the referred abundances appears to follow the same behavior of the solar curve abundances. Further, one observes a signifficant correlation between the abundance ratio [m/Fe] and condensation temperature (Tc) of refractory elements (Tc > 900 K). The behavior of the projected rotational velocity (v sin i) versus the computed abundances [m/Fe] is also analyzed, presenting no clear trends. This study oers additional constraints to trace the evolutive history of solar-like stars with planets, including the search for chemical dierences between stars with and without transit planets and anomalies in the studied abundances
Resumo:
This study proposes an observing program focused on the investigation of the stellar magnetism and dynamo evolution in cool active solar-like stars. More mainly in the solar analogs and twins. Observations of stars of our base were carried out with two spectropolarimeter (ESPaDOnS@CFHT and NARVAL@TBL). The analyse of stars in stage different allows an understanding of the dependence of magnetic activity on basic stellar parameters such as rotation, mass, age and depth of the convection zone. This study provides measures necessary for testing dynamo theories. The 65 targets for this project are solar type stars with mass spanning from 0:9 M=Mfi 1:075 solar masses and at different evolutionary stages. Our two main science objectives were, (i) To determine how the magnetic field evolved from the ZAMS to the TO (turn off) for stars with 0:9 M=Mfi 1:075; (ii) To determine the impact of convective depth and rotation on magnetic of cool stars of solar type. The main result from this study was the characterization of the dependence of magnetic field intensity as function of age, Rossby number and the convective zone deepening. This context, the availability of ESPaDOnS and NARVAL opens an exceptional possibility to study the magnetic properties of Sun-like stars by means of spectropolarimetric observations
Resumo:
We report two theoretical works, based in numerical simulations. The first study consists in the investigation of equilibrium phases and vortex formation in Ferro and Permalloy circular and square nanoelements.The another have the aim to investigate the magnetostatic interaction between pairs of nanodisks of Ferro and Permalloy and it`s impact in the vortex structure
Resumo:
The present work reports a theoretical study of the vortex nucleation in elliptical nanoelements of iron with the dimensions of the principal and secondary axes in the range of hundreds of nanometers. It will be divided into three steps: first of all, a general panorama and a justification for the interest of the study of nanosystems and their applications. Second, a explanation about the computational simulations applied for the calculations of the remanent states after the saturation in a external field which value is grater then the exchange field of the material for nanoelements coupled or not to a antiferromagnetic substrate. Systems with that range of axes dimensions and height in the range of a few dozens of nanometers have a natural tendency to nucleate closed magnetic ux, like vortex. Third, we will emphasize the nucleation of double vortex, the main types and the dimensions in which they occur (phase diagram) and the factors that may in uence in the nucleation and control of the remanent state. We shown that we can control specially the distance between the vortex cores changing the value of the interface field. Finally, we present a expectative of continuity of this work with objectives and applications