742 resultados para CNPQ::LINGUISTICA, LETRAS E ARTES::LINGUISTICA::LINGUISTICA APLICADA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival models deals with the modelling of time to event data. In certain situations, a share of the population can no longer be subjected to the event occurrence. In this context, the cure fraction models emerged. Among the models that incorporate a fraction of cured one of the most known is the promotion time model. In the present study we discuss hypothesis testing in the promotion time model with Weibull distribution for the failure times of susceptible individuals. Hypothesis testing in this model may be performed based on likelihood ratio, gradient, score or Wald statistics. The critical values are obtained from asymptotic approximations, which may result in size distortions in nite sample sizes. This study proposes bootstrap corrections to the aforementioned tests and Bartlett bootstrap to the likelihood ratio statistic in Weibull promotion time model. Using Monte Carlo simulations we compared the nite sample performances of the proposed corrections in contrast with the usual tests. The numerical evidence favors the proposed corrected tests. At the end of the work an empirical application is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research work aims to make a study of the algebraic theory of matrix monic polynomials, as well as the definitions, concepts and properties with respect to block eigenvalues, block eigenvectors and solvents of P(X). We investigte the main relations between the matrix polynomial and the Companion and Vandermonde matrices. We study the construction of matrix polynomials with certain solvents and the extention of the Power Method, to calculate block eigenvalues and solvents of P(X). Through the relationship between the dominant block eigenvalue of the Companion matrix and the dominant solvent of P(X) it is possible to obtain the convergence of the algorithm for the dominant solvent of the matrix polynomial. We illustrate with numerical examples for diferent cases of convergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)