64 resultados para apaga-fogo
Resumo:
Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results
Resumo:
The development of activities in the oil and gas sector has been promoting the search for materials more adequate to oilwell cementing operation. In the state of Rio Grande do Norte, the cement sheath integrity tend to fail during steam injection operation which is necessary to increase oil recovery in reservoir with heavy oil. Geopolymer is a material that can be used as alternative cement. It has been used in manufacturing of fireproof compounds, construction of structures and for controlling of toxic or radioactive waste. Latex is widely used in Portland cement slurries and its characteristic is the increase of compressive strength of cement slurries. Sodium Tetraborate is used in dental cement as a retarder. The addition of this additive aim to improve the geopolymeric slurries properties for oilwell cementing operation. The slurries studied are constituted of metakaolinite, potassium silicate, potassium hydroxide, non-ionic latex and sodium tetraborate. The properties evaluated were: viscosity, compressive strength, thickening time, density, fluid loss control, at ambient temperature (27 ºC) and at cement specification temperature. The tests were carried out in accordance to the practical recommendations of the norm API RP 10B. The slurries with sodium tetraborate did not change either their rheological properties or their mechanical properties or their density in relation the slurry with no additive. The increase of the concentration of sodium tetraborate increased the water loss at both temperatures studied. The best result obtained with the addition of sodium tetraborate was thickening time, which was tripled. The addition of latex in the slurries studied diminished their rheological properties and their density, however, at ambient temperature, it increased their compressive strength and it functioned as an accelerator. The increase of latex concentration increased the presence of water and then diminished the density of the slurries and increased the water loss. From the results obtained, it was concluded that sodium tetraborate and non-ionic latex are promising additives for geopolymer slurries to be used in oilwell cementing operation
Resumo:
The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with greater control of emissions due to the passage of exhaust gases through a macro-porous ceramic bed. This paper presents an infrared burner commercial, which was adapted an experimental ejector, capable of promoting a mixture of liquefied petroleum gas (LPG) and glycerin. By varying the percentage of dual-fuel, it was evaluated the performance of the infrared burner by performing an energy balance and atmospheric emissions. It was introduced a temperature controller with thermocouple modulating two-stage (low heat / high heat), using solenoid valves for each fuel. The infrared burner has been tested and tests by varying the amount of glycerin inserted by a gravity feed system. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by a data acquisition system which recorded real-time measurements of the thermocouples attached. The burner had a stable combustion at levels of 15, 20 and 25% of adding glycerin in mass ratio of LPG gas, increasing the supply of heat to the plate. According to data obtained showed that there was an improvement in the efficiency of the 1st Law of infrared burner with increasing addition of glycerin. The emission levels of greenhouse gases produced by combustion (CO, NOx, SO2 and HC) met the environmental limits set by resolution No. 382/2006 of CONAMA
Resumo:
Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner