77 resultados para Seção rifte
Resumo:
This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin
Resumo:
The study of Brazilian sedimentary basins concentrates on their rift phase, whereas the Post-rift phase has been considered a tectonic quiescent period. The post-rift sequence of the Potiguar Basin, in the far northeastern Brazil, was once considered little deformed, however several studies have shown how that it was affected by major fault systems. The purpose of this thesis is to characterize the post-rift tectonic. The specific objectives are: to characterize the Neogene and Quaternary sedimentary units that outcrop of the Potiguar Basin; to show how the NW-SEtrending Afonso Bezerra Faults System deformed outcrop rocks in the Basin; to describe soft-sediment deformation in gravels of the Quaternary Alluvial Deposits from Açu River. Facies analyses, grain-size studies, luminescence dating, remote sensing, structural mapping, shallow geophysics (georadar), paleostress and petrography were carried out. The structural mapping and the georadar sections indicated that the Carnaubais and Afonso Bezerra fault systems formed fractures, silicified and non-silicified faults or deformation bands, affecting mainly the Açu, Jandaíra and Barreiras formations. The petrographic data indicate that the strong silicification resulted in a sealant character of the faults. Paleostress analysis indicates that two stress fields affected the Basin: the first presented N-S-trending compression, occurred from the Neocretaceous to the Miocene; the second stress field presents E-W-trending compression, acts from the Miocene to the present. It was verified once the Afonso Bezerra System Faults was reactivated in periods post-Campanian and affects all post-rift lithostratigraphic units of Potiguar Basin, including Quaternary sedimentary covers. The study about soft-sediment deformation structures indicates that they are similar in morphology and size to modern examples of seismically-induced deformation strutures in coarse sediments. TL and OSL ages indicate that sediment deposition and associated soft-sediment deformation occurred at least six times from ~352 Ka to ~9 Ka. Finally these studies demonstrate how recent is tectonics in the Basin Potiguar
Resumo:
The area studied forms a thin NNE-directed belt situated south of Recife town (Pernambuco state), northeastern Brazil. Geologically, it comprises the Pernambuco Basin (PB), which is limited by the Pernambuco Lineament to the north, the Maragogi high to the south and the Pernambuco Alagoas massif to the west, all of them with Precambrian age. This thesis reports the results obtained for the Cabo Magmatic Province (CMP), aiming the characterization of the geology, stratigraphy, geochronology, geochemistry and petrogenesis of the Cretaceous igneous rocks presented in the PB. The PB is composed of the Cabo Formation (rift phase) at the base (polymictic conglomerates, sandstones, shales), an intermediate unit, the Estiva Formation (marbles and argillites), and, at the top, the Algodoais Formation (monomictic conglomerates, sandstones, shales). The CMP is represented by trachytes, rhyolites, pyroclastics (ignimbrites), basalts / trachy-andesites, monzonites and alkali-feldspar granite, which occur as dykes, flows, sills, laccoliths and plugs. Field observations and well descriptions show that the majority of the magmatic rocks have intrusive contacts with the Cabo Formation, although some occurrences are also suggestive of synchronism between volcanism and siliciclastic sedimentation. 40Ar/39Ar and zircon fission tracks for the magmatic rocks indicate an average age of 102 r 1 Ma for the CMP. This age represents an expressive event in the province and is detected in all igneous dated materials. It is considered as a minimum age (Albian) for the magmatic episode and the peak of the rift phase in the PB. The 40Ar/39Ar dates are about 10-14 Ma younger than published palynologic ages for this basin. Geochemically, the CMP may be divided in two major groups; i) a transitional to alkaline suite, constituted by basalts to trachy-andesites (types with fine-grained textures and phenocrysts of sanidine and plagioclase), trachytes (porphyrytic texture, with phenocrysts of sanidine and plagioclase) and monzonites; ii) a alkaline suite, highly fractionated, acidic volcano-plutonic association, formed by four subtypes (pyroclastic flows ignimbrites, fine-to medium-grained rhyolites, a high level granite, and later rhyolites). These four types are distinguished essentially by field aspects and petrographic and textural features. Compatible versus incompatible trace element concentrations and geochemical modeling based on both major and trace elements suggest the evolution through low pressure fractional crystallization for trachytes and other acidic rocks, whereas basalts / trachy-andesites and monzonites evolved by partial melting from a mantle source. Sr and Nd isotopes reveal two distinct sources for the rocks of the CMP. Concerning the acidic ones, the high initial Sr ratios (ISr = 0.7064-1.2295) and the negative HNd (-0.43 to -3.67) indicate a crustal source with mesoproterozoic model ages (TDM from 0.92 to 1.04 Ga). On the other hand, the basic to intermediate rocks have low ISr (0.7031-0.7042) and positive HNd (+1.28 to +1.98), which requires the depleted mantle as the most probable source; their model ages are in the range 0.61-0.66 Ga. However, the light rare earth enrichment of these rocks and partial melting modeling point to an incompatible-enriched lherzolitic mantle with very low quantity of garnet (1-3%). This apparent difference between geochemical and Nd isotopes may be resolved by assuming that the metasomatizing agent did not obliterate the original isotopic characteristics of the magmas. A 2 to 5% partial melting of this mantle at approximately 14 kbar and 1269oC account very well the basalts and trachy-andesites studied. By using these pressure and temperatures estimates for the generation of the basaltic to trachy-andesitic magma, it is determined a lithospheric stretching (E) of 2.5. This E value is an appropriated estimate for the sub-crustal stretching (astenospheric or the base of the lithosphere?) region under the Pernambuco Basin, the crustal stretching probably being lower. The integration of all data obtained in this thesis permits to interpret the magmatic evolution of the PB as follows; 1st) the partial melting of a garnet-bearing lherzolite generates incompatible-enriched basaltic, trachy-andesitic and monzonitic magmas; 2nd) the underplating of these basaltic magmas at the base of the continental crust triggers the partial melting of this crust, and thus originating the acidic magmas; 3rd) concomitantly with the previous stage, trachytic magmas were produced by fractionation from a monzonitic to trachy-andesitic liquid; 4th) the emplacement of the several magmas in superficial (e.g. flows) or sub-superficial (e.g. dykes, sills, domes, laccoliths) depths was almost synchronically, at about 102 r 1 Ma, and usually crosscutting the sedimentary rocks of the Cabo Formation. The presence of garnet in the lherzolitic mantle does not agree with pressures of about 14 kbar for the generation of the basaltic magma, as calculated based on chemical parameters. This can be resolved by admitting the astenospheric uplifting under the rift, which would place deep and hot material (mantle plume?) at sub-crustal depths. The generation of the magmas and their subsequent emplacement would be coupled with the crustal rifting of the PB, the border (NNE-SSW directed) and transfer (NW-SE directed) faults serving as conduits for the magma emplacement. Based on the E parameter and the integration of 40Ar/39Ar and palynologic data it is interpreted a maximum duration of 10-14 Ma for the rift phase (Cabo Formation clastic sedimentation and basic to acidic magmatism) of the PB
Resumo:
Numerous studies have indicated that the Potiguar Basin is affected by Cenozoic tectonics. The reactivation of Cretaceous fault systems affect the post-rift units, witch include Neogene and overlying Quaternary sediments. In this context, the objectives of this thesis are the followings: (1) to characterize the effects of post-rift tectonics in the morphology of Apodi Mossoró-river valley located in the central portion of the Potiguar, (2) to characterize the drainage of the Apodi Mossoró river valley and investigate the behavior of their channels across active faults, and (3) to propose a geologic-geomorphological evolutionary model for the study area. This study used a geological and geomorphological mapping of the central part of the basin, with emphasis on the Quaternary record, luminescence dating of sediments, and geoelectric profiles of the area. The results reveal by maps of structural lineaments and drainage channels of the rivers form valleys that are affected by faults and folds. In Apodi-Mossoró valley, anomalies of channel morphology are associated with the deformation of the post-rift basin. These anomalies show the reactivation of major fault systems in the Potiguar Basin in Cenozoic. On a regional scale, can be seen through the vertical electric profiles that the Cenozoic tectonics is responsible for the elevation of a macro dome NE-SE-trending 70-km long and 50km wide and up to 270 above sea level. In this sector, the vertical electric profiles data show that the contact between the Cretaceous and Neogene rise more than 100m. This Is an important feature of inversion data obtained in this work showed that the deposits that cover the macro dome (Serra do Mel) have ages of 119 ka to 43 ka. In the river valley and surrounding areas Apodi-Mossoró ages vary between 319 ka and 2.7 ka. From these data it was possible to establish the correct geochronological posiconamento paleodepósitos of distinguishing them from the fluvial deposits of the Neogene (Barreiras Formation)
Resumo:
The great interest observed in wireless communication systems has required the development of new configurations of microstrip antennas, because they are easily built and integrated to other microwave circuit components, which is suitable for the construction and development of planar antenna arrays and microwave integrated circuits. This work presents a new configuration of tapered microstrip antenna, which is obtained by impressing U-slots on the conducting patch combined with a transmission line matching circuit that uses an inset length. It is shown that the use of U-slots in the microstrip antenna conducting patch excites new resonating modes, that gives a multiband characteristic for the slotted microstrip antenna, that is suitable for applications in communication systems that operates several frequencies simultaneously. Up to this date, the works reported in the literature deals with the use of Uslotted microstrip rectangular antennas fed by a coaxial probe. The properties of a linear array of microstrip patch tapered antennas are also investigated. The main parameters of the U slotted tapered microstrip antennas are investigated for different sizes and locations of the slots impressed on the conducting patch. The analysis of the proposed antenna is performed by using the resonant cavity and equivalent transmission line methods, in combination with a parametric study, that is conducted by the use of the Ansoft Designer, a commercial computer aided microwave software well known by its accuracy and efficiency. The mentioned methods are used to evaluate the effect in the antennas parameters, like resonant frequency and return loss, produced by variations of the antenna structural parameters, accomplished separately or simultaneously. An experimental investigation is also developed, that consists of the design, construction and measurement of several U slotted microstrip antenna prototypes. Finally, theoretical and simulated results are presented that are in agreement with the measured ones. These results are related to the resonating modes identification and to the determination of the main characteristics of the investigated antennas, such as resonant frequency, return loss, and radiation pattern
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The segment of Carnaubais Fault located in the southeasthern portion of Guamaré Graben (Potiguar Basin) was studied. Several structures were detected and some of them strongly suggest that the last movements in Carnaubais Fault are of Neotectonic age. The study comprises an integrated interpretation of geologic, geomorphologic and geophysical data (gravimetry, magnetometry, resistivity, and self potential methods). According to the size of the studied areas, two approaches were used in this research. The first approach is of a regional nature and was conducted in an area, hereafter named Regional Area, having approximately 6,000 km2 and localized in the northern portion of Rio Grande do Norte state, around Macau city. The second approach comprises detailled studies of two small areas inside the Regional Area: the Camurupim and São Bento areas. Gravimetric and topographic data were used in the Regional Area. A separation into regional and residual components were conducted both on gravimetric and topographic data. The interpretation of the residual component of the gravimetric data allows a precise mapping of the borders of the Guamaré Graben. The regional component features of the topographic data are controlled by the pair of conjugate faults composed by the Carnaubais Fault (NE direction) and the Afonso Bezerra Fault (NW direction). On the other hand, the residual component of the topographic data shows that river valleis of NW direction are sharply interrupted where they intersect Carnaubais Fault. This fact is interpreted as an evidency that the last significant moviments occured in the Carnaubais Fault. Geologic, geomorphologic and geophysical data (magnetometry, resistivity, and self potential methods) were used in the Camurupim Area. The geologic mapping allows to identify five lithophacies unities. The first two unities (from base to top) were interpreted as composing a marine (or transitional) depositional sequency while the other were interpreted is composing a continental depositional sequence. The two sequences are clearly separated of an erosional discordance. The unities grouped in the marine sequence are composed by calcarenites (Unity A) and mudstones (Unity B). Unity A was deposited in a shalow plataform while Unity B, in a tidal flat. The unities grouped in the continental sequence are composed of conglomerate (Unity C) and sandstones (Unities D and E). Unities C and D are fluvial deposits while unity E is an eolian deposit. Unities A and B can be stratigraphycally correlated with Guamaré Formation. Unities C and D present three possible correlations. They may be correlated with Tibau Formation; or with Barreiras Formation; or with a clastic sediment deposit, commonly found in some rivers of Rio Grande do Norte state, and statigraphycally positioned above Barreiras Formation. Based on the decrease of the grain sizes from base to top both on unities C and D, it is proposed that these unities are correlated with the clastic sediment above mentioned. In this case, these unities would have, at least, Pleistocenic age. Finally, it is proposed that Unity E represent an eolian deposit that sufferred recent changes (at least in the Quaternary). The integrated interpretation of hydrographic, morphologic and geophysical data from Camurupim Area shows that Carnaubais Fault is locally composed by a system of several paralel subvertical faults. The fault presenting the larger vertical slip controls the valley of Camurupim river and separates the area in two blocks; in the nothern block the top of the Jandaira limestone is deeper than in the southern block. In addition, at least one of the faults in the northern block is cutting the whole sedimentary section. Because unities C , D, and/or E may be of Quaternary age, tectonic moviments possibly occured in Carnaubais Fault during this period. Detailled geologic mapping were conducted in beachrocks found in São Bento Area. This area is located at the intersection of the coast line with the Carnaubais Fault. The detected structures in the beachrocks are very similar to those caused by fragile deformations. The structures mapped in the beachrocks are consistent with a stress field with maximun compressional stress in E-W direction and extensional stress in the N-S direction. Since the Carnaubais Fault has a NE direction, it is optimally positioned to suffer tectonic movements under the action of such stress field. In addition, the shape of the coastal line appear to be controlled by the Carnaubais Fault. Furthemore, the observed structures in Camurupim Área are consistent with this stress field. These facts are interpreted as evidences that Carnaubais Fault and beachrocks suffered coupled tectonic movements. These moviments are of Neotectonic age because the beachrocks present ages less than 16,000 years
Resumo:
This dissertation deals with sedimentological and structural framework of the siliciclastic rock of the Serra do Martins Formation (FSM) in the Portalegre, Martins and Santana plateau, located to the south of Potiguar Basin, in the southwest and central Rio Grande do Norte state. This formation, regarded as of Oligo-Miocene age based on intrusive relations of the Miocene Macau volcanics, has a still disputable age due to the lack of appropriate bio and/or chronostratigraphic markers. The FSSM deposits crop out along 650 to 750 m high plateau, as a remanescent sedimentary cover directly overlying topographically uplifted pre-cambrian crystalline rocks. During the last decades, these deposits were interpreted according to a Tertiary paleoclimatic evolutionary model, associated to pedogenetic processes. The sedimentological characterization of the FSM was done through a detailed study of its facies, petrography and diagenetic features. The facies study was based on description of field relations, textures and structures, the piling up of the strata and their lateral variations. The FSM was deposited by an anastomosing to coarse-meandering fluvial system, including deposits of lag, cannel-fill, ouver-bank and flood plain. The petrographic composition of the sediments, coupled to their facies and paleocurrent directions, suggest a rather distal sourcearea, to the south of the present plateau. The diagenetic study identified an incipient grain mechanical compaction, pronounced dissolution of the framework, matrix and/or cement components, intense precipitation of kaolinite, silic and, eventually, iron oxides, besides mechanical infiltration of the clays. Most of these events, regarded in the literature as associated to near-surface conditions (eo or telodiagenesis), indicate the FSM sediments were never deeply buried. Topographic relations along longitudinal and transversal sections reaching the Potiguar Basin to the north identified regional dips that allow to discuss stratigraphic correlations between the FSM and the basin formations. The sedimentological features of the different units and the intrusive relations of the Macau volcanics were also considered in these correlations,which support the Oligo-Miocene age previously accepted for the FSM. Concerning the tectonic framework of the FSM, this work investigated the pre-cambrian to cretaceous heritage and the cenozoic deformation, allowing the recognition of pre-, sin and post-FSM structures. The crystalline basement, belonging to the Seridó Belt, displays NE and WNW foliation trends related to the Brasiliano-age ductile shear zones. In this terrain, brittle-ductile and brittle NE- and NW-trending structures, associated with extensional joints filled with pegmatites and quartz veins, are related to an E-W compression by the end of Brasiliano Cycle. The E-W joints and NE-trending fractures were reactivated by N-S to N-S to NW extension during late Jurassic to Cretaceous times, controlling the emplacement of the Rio Ceará-Mirim basic dyke swarm and the opening of the Potiguar rift basin
Resumo:
In spite of significant study and exploration of Potiguar Basin, easternmost Brazilian equatorial margin, by the oil industry, its still provides an interesting discussion about its origin and the mechanisms of hydrocarbon trapping. The mapping and interpretation of 3D seismic reflection data of Baixa Grande Fault, SW portion of Umbuzeiro Graben, points as responsible for basin architecture configuration an extensional deformational process. The fault geometry is the most important deformation boundary condition of the rift stata. The development of flat-ramp geometries is responsible for the formation of important extensional anticline folds, many of then hydrocarbon traps in this basin segment. The dominant extensional deformation in the studied area, marked by the development of normal faults developments, associated with structures indicative of obliquity suggests variations on the former regime of Potiguar Basin through a multiphase process. The changes in structural trend permits the generation of local transpression and transtension zones, which results in a complex deformation pattern displayed by the Potiguar basin sin-rift strata. Sismostratigraphic and log analysis show that the Baixa Grande Fault acts as listric growing fault at the sedimentation onset. The generation of a relay ramp between Baixa Grande Fault and Carnaubais Fault was probably responsible for the balance between subsidence and sedimentary influx taxes, inhibiting its growing behaviour. The sismosequences analysis s indicates that the extensional folds generation its diachronic, and then the folds can be both syn- and post-depositional
Resumo:
The Rio do Peixe Basin is located in the border of Paraíba and Ceará states, immediately to the north of the Patos shear zone, encompassing an area of 1,315 km2. This is one of the main basins of eocretaceous age in Northeast Brazil, associated to the rifting event that shaped the present continental margin. The basin can be divided into four sub-basins, corresponding to Pombal, Sousa, Brejo das Freiras and Icozinho half-grabens. This dissertation was based on the analysis and interpretation of remote sensing products, field stratigraphic and structural data, and seismic sections and gravity data. Field work detailed the lithofacies characterization of the three formations previously recognised in the basin, Antenor Navarro, Sousa and Rio Piranhas. Unlike the classical vertical stacking, field relations and seismostratigraphic analysis highlighted the interdigitation and lateral equivalency between these units. On bio/chrono-stratigraphic and tectonic grounds, they correlate with the Rift Tectonosequence of neocomian age. The Antenor Navarro Formation rests overlies the crystalline basement in non conformity. It comprises lithofacies originated by a braided fluvial system system, dominated by immature, coarse and conglomeratic sandstones, and polymict conglomerates at the base. Its exposures occur in the different halfgrabens, along its flexural margins. Paleocurrent data indicate source areas in the basement to the north/NW, or input along strike ramps. The Sousa Formation is composed by fine-grained sandstones, siltites and reddish, locally grey-greenish to reddish laminated shales presenting wavy marks, mudcracks and, sometimes, carbonate beds. This formation shows major influence of a fluvial, floodplain system, with seismostratigraphic evidence of lacustrine facies at subsurface. Its distribution occupies the central part of the Sousa and Brejo das Freiras half-grabens, which constitute the main depocenters of the basin. Paleocurrent analysis shows that sediment transport was also from north/NW to south/SE
Resumo:
Geological and geophysical studies (resistivity, self potential and VLF) were undertaken in the Tararaca and Santa Rita farms, respectively close to the Santo Antônio and Santa Cruz villages, eastern Rio Grande do Norte State, NE Brazil. Their aim was to characterize water acummulation structures in crystalline rocks. Based on geological and geophysical data, two models were characterized, the fracture-stream and the eluvio-alluvial through, in part already described in the literature. In the Tararaca Farm, a water well was located in a NW-trending streamlet; surrounding outcrops display fractures with the same orientation. Apparent resistivity sections, accross the stream channel, confirm fracturing at depth. The VLF profiles systematically display an alignment of equivalent current density anomalies, coinciding with the stream. Based on such data, the classical fracture-stream model seems to be well characterized at this place. In the Santa Rita Farm, a NE-trending stream display a metric-thick eluvioregolith-alluvial cover. The outcropping bedrock do not present fractures paralell to the stream direction, although the latter coincides with the trend of the gneiss foliation, which dips to the south. Geophysical data confirm the absence of a fracture zone at this place, but delineate the borders of a through-shaped structure filled with sediments (alluvium and regolith). The southern border of this structure dips steeper compared to the northern one. This water acummulation structure corresponds to an alternative model as regards to the classical fracture-stream, being named as the eluvio-alluvial trough. Its local controls are the drainage and relief, coupled with the bedrock weathering preferentially following foliation planes, generating the asymmetry of the through
Resumo:
The structural knowledge of the western portion of the Potiguar Basin is still in its infancy, especially these related to NW-trending fault systems. This paper analyzes the Poço Verde-Caraúbas Fault System, which was initially recognized in subsurface. The activities involved in this study correspond to remote-sensing analysis and, in particular, to the geometric and kinematic analysis of post-rift sequences of the basin. In addition, the study aimed to determine the stress fields operating in the area. The studies were carried out in an area of 1,000 km², located in the western portion of Potiguar Basin along the Poço Verde-Caraúbas Fault System, Rio Grande do Norte State. The remote sensing imagery indicates a predominance of NW-SE-trending lineaments, consistent with the fault system under study, followed by the NE-SW, N-S and E-W directions. The tectonic structures mapped were analyzed only in outcrops of the Jandaíra Formantion. They are joints (filled or not) in all directions, but with predominance of the NW-trending joints. Faults are usually N-S-trending normal faults and NW-SE and NE-SW-trending strike-slip faults. Geodynamic analysis identified two tectonic stress fields: the first field, "Field 1" is represented by an N-S-trending horizontal compression and E-W-trending horizontal extension. This field affected the Potiguar Basin at least until the Miocene. The second field, "Field 2", is represented by an E-W-trending horizontal compression and N-S-trending horizontal extension. This is the present-day stress field and has affected the Potiguar basin since the Pliocene
Resumo:
In this study, the methodological procedures involved in digital imaging of collapsed paleocaves in tufa using GPR are presented. These carbonate deposits occur in the Quixeré region, Ceará State (NE Brazil), on the western border of the Potiguar Basin. Collapsed paleocaves are exposed along a state road, which were selected to this study. We chose a portion of the called Quixeré outcrop for making a photomosaic and caring out a GPR test section to compare and parameterize the karst geometries on the geophysical line. The results were satisfactory and led to the adoption of criteria for the interpretation of others GPR sections acquired in the region of the Quixeré outcrop. Two grids of GPR lines were acquired; the first one was wider and more spaced and guided the location of the second grid, denser and located in the southern part of the outcrop. The radargrams of the second grid reveal satisfactorily the collapsed paleocaves geometries. For each grid has been developed a digital solid model of the Quixeré outcrop. The first model allows the recognition of the general distribution and location of collapsed paleocaves in tufa deposits, while the second more detailed digital model provides not only the 3D individualization of the major paleocaves, but also the estimation of their respective volumes. The digital solid models are presented here as a new frontier in the study of analog outcrops to reservoirs (for groundwater and hydrocarbon), in which the volumetric parameterization and characterization of geological bodies become essential for composing the databases, which together with petrophysical properties information, are used in more realistic computer simulations for sedimentary reservoirs.
Resumo:
The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry
Resumo:
The 3D gravity modeling of the Potiguar rift basin consisted of a digital processing of gravity and aeromagnetic data, subsidized by the results of Euler deconvolution of gravity and magnetic data and the interpretation of seismic lines and wells descriptions. The gravity database is a compilation of independent geophysical surveys conducted by several universities, research institutions and governmental agencies. The aeromagnetic data are from the Bacia Potiguar and Plataforma Continental do Nordeste projects, obtained from the Brazilian Petroleum Agency (ANP). The solutions of the Euler Deconvolution allowed the analysis of the behavior of the rift main limits. While the integrated interpretation of seismic lines provided the delimitating horizons of the sedimentary formations and the basement top. The integration of these data allowed a 3D gravity modeling of basement topography, allowing the identification of a series of internal structures of the Potiguar rift, as well intra-basement structures without the gravity effect of the rift. The proposed inversion procedure of the gravity data allowed to identify the main structural features of the Potiguar rift, elongated in the NE-SW direction, and its southern and eastern faulted edges, where the sedimentary infill reachs thicknesses up to 5500 m. The southern boundary is marked by the Apodi and Baixa Grande faults. These faults seem to be a single NW-SE oriented fault with a strong bend to NE-SW direction. In addition, the eastern boundary of the rift is conditioned by the NE-SW trending Carnaubais fault system. It was also observed NW-SE oriented faults, which acted as transfer faults to the extensional efforts during the basin formation. In the central part of the residual anomaly map without the gravity effect of the rift stands out a NW-SE trending gravity high, corresponding to the Orós-Jaguaribe belt lithotypes. We also observe a gravity maximum parallel to the Carnaubais fault system. This anomaly is aligned to the eastern limit of the rift and reflects the contact of different crustal blocks, limited by the eastern ward counterpart of the Portalegre Shear Zone