202 resultados para Resistência de Materiais
Resumo:
Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Desenvolvimento de bloco de vedação com barita na composição de partida para blindagem de radiação X
Resumo:
This work main objective is to study the use of bricks in barium X-rays rooms in order to contribute to the optimization of shielding rooms diagnosis. The work was based on experimental measurements of X-ray attenuation (40 to 150 kV), using ceramic seal bearing the incorporation of barium sulfat (BaSO4). Different formulations were studied in three different firing temperatures and evaluated for incorporation in the ceramic body. The composition of 20% of barite processed at a temperature of 950 ° C showed better physical and mechanical properties, is considered the most suitable for the purpose of this work. Were produced bricks sealing composition formulated based on that presented the best technological features. These blocks were tested physically as a building material and wall protective barrier. Properties such as visual, deviation from the square, face flatness, water absorption and compressive strength were evaluated for all the blocks produced. The behavior of this material as attenuator for X-rays was investigated by experimental results which take into account mortar manufacturers barium through the different strains and compared with the reference material (Pb). The simulation results indicated that the ceramic block barium shows excellent properties of attenuation equivalence lead taking into account the energy used in diagnostic X-ray
Resumo:
Due to the occurrence of diseases in the use of structural reinforcements in composites, with presentation of concrete blanket detachment, has been identified the need to evaluate the performance of concrete reinforced with glass fiber. This study aims to evaluate these concretes by means of testing methodologies, using concrete with low resistance with structural reinforcement for confinement by preimpregnated glass fiber and traditional fiberglass blanket. The first stage of work was the development of methodologies for analysis, opting for four types, such as the acoustic survey, strength to compressive, the pull-off and ultrasound. Next, tests were carried out using the four selected methodologies in 30 of proof-of-specimens by 5x10 cm, 15 were reinforced with the traditional fiberglass blanket with 5specimens exposed to test a marine environment of marine coastline of Natal-RN and 15 were reinforced with a pre-impregnated glass fiber blanket, as well as 5specimens exposed to a test environment of the marine coastline of Natal-RN. After conducting the acoustic survey, it has been verified a lack of delaminating and air bubbles in the samples, confirming the absence of gross shortcomings in the implementation of the ribs both the traditional fiberglass blanket and in the preimpregnated fiber glass blanket. After carrying out methods of pull-off and compressive strengthening test it was observed that the reinforced proof-bodies with pre-impregnated glass blanket showed maximum stresses higher than the traditional fiberglass blanket; consequently a greater grip with the formation of a smaller area of . fracture, unlike traditional glass mat, which showed lower maximum stresses, with a greater area of fracture. It was also found that the traditional fiberglass blanket presented detachment of blanket-concrete interface, unlike the pre-impregnated fiberglass blanket, which showed a better grip on the blanket-concrete interface. In the trial of ultrasound there was no presence of cracks in the blanket-concrete interface, yielding to both blankets good compactness of the concrete. At the end of this work, they were developed and proposed two methods of testing for evaluation of reinforced concrete structures with composites, for standardization, the acoustic survey and pull-off
Resumo:
Piauí state is a major producer of traditional red ceramic burning as bricks, tiles and ceramic tiles, with its main production center located in the city of Teresina. The state has large reserves of raw materials that can be used in the ceramic coating as clays, quartz, talc and carbonates. However, in the preparation of ceramic bodies using only a mixture of clays with different characteristics. The study aims to evaluate the effect of adding two types of carbonates in the ceramic semiporous mass coating produced in Piauí and then to verify the potential use of these carbonates as supplementary raw material product manufactured or the feasibility of obtaining a ceramic plate that meets the specifications for the porous coating. For this, were characterized the ceramic Piauí coating mass, a calcitic carbonate and a dolomitic, were made in the levels of 2, 4, 8, 16, and 32%. The masses were formed by pressing and burneds in two environments: a laboratory furnace (1080°C, 1120°C, 1140°C, and 1160°C) and an industrial furnace (1140°C). Then, following tests of linear shrinkage water absorption, apparent porosity, bulk density and flexural strength. Furthermore, the fired specimens were tested for their macrostructure and microstructure. The results showed the possibility of using the carbonate in ceramic mass flooring produced in Piauí, as added in small proportions improved dimensional stability and increased mechanical strength of ceramics pieces. It also proved itself possible to produce porous coating when added in higher levels
Resumo:
The study aimed at the treatment of attapulgite for the development and characterization of composite recycled low density polyethylene - PEBD_rec embedded with natural attapulgite - ATP_NAT, sifted - ATP_PN and attapulgite treated with sulfuric acid - ATP_TR in different compositions (1, 3 and 5%) and compared with the PEBD_rec. The atapulgitas, natural, screened and treated, were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and determining the area specific surface (BET). The composites were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), Xray diffraction (XRD), torque rheometry, scanning electron microscopy (SEM) and traction. The composite PEBD_rec / ATP (natural, sieved and treated) were produced by mixing in the molten state in a single screw extruder matrix wire with subsequent reprocessing matrix tape. It was found that the screening of attapulgite not reduce the quantity of quartz and the acid treatment completely extracted dolomite aggregate impurities of the channels attapulgite, and increase their surface area. The addition of attapulgite in PEBD_rec acts as a catalyst, reducing the thermal stability of the polymer. The increased concentration of attapulgite, increases resistance and reduces the elongation at break and modulus of elasticity of the composite PEBD_rec / attapulgite
Resumo:
Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy
Resumo:
In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)
Resumo:
In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA
Resumo:
The MCM-41 mesoporous synthesis was done using rice hulls ash and chrysotile as natural alternative silica sources. For the using of these sources, chemical and thermic treatments were done in both materials. After chemical and thermic treatments, these materials were employed on the MCM-41 mesoctructures synthesis. The natural materials treated and employed in the synthesis were characterized by several techniques such as X-ray diffraction, N2 adsorption and desorption, scanning electronic microscopy and thermogravimetric analysis. MCM-41 standart samples synthetized with aerosil 200 commercial sílica were used to evaluation. The formed material from rice hulls ash showed values from BET specific area about 468 m².g-1, N2 adsorption and desorption isotherms and loss mass similar to reference materials. The silica from chrysotile calcined and leached was employed to mesoporous materials synthesis. The BET specific area showed values about 700 m².g-1, N2 adsorption and desorption isotherms type IV and loss mass similar to mesoporous materials. The formed material from calcined and leached chrysotile, without calcination, applied to phenol remotion carried high performance liquid chromatography and evaluated with organophilic clays with different treatments. By the characterization techniques were proved that mesoporous materials with lesser order that reference samples. The material formed from rice hulls ash without the calcination step achieved better adsorption results than organophilic clays
Resumo:
Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed
Resumo:
Cementing operations are conducted at different times of the well s life and they have high importance, because the functions are fundamental to keep good properties during a long life of the well, such as, maintain the mechanical stability of the well, to promote the isolation hydraulic and support the tubing. In some situations, the rocky zones have low fractures pressures and require the use of lightweight slurries to prevent the hydrostatic pressure in the formation is greater than the pressure of fracture. There are three ways to reduce the density of cement slurries: exterders water additives, microspheres and foamed slurries. The most used extender water additive is sodium bentonite, which is a clay with a good capacity of water absorption and expansion of its volume, the main disadvantage of this additive is the reduction of the strength. Currently, the use of nanoscale particles has received special attention, mainly because they get new functionalities. Following this trend, this paper aims to use a colloidal solution of nano-silica as an exterders water additives for use in oil wells. Slurries were designed with fixed 13lb/gal density and concentration of nano silica 0.1 gpc; 0.4 gpc; 0.7 and 1gpc, the influence of nano-silica was studied at these levels in isolation and combined varying concentrations of CaCl2,. Tests including rheology, stability, strength, thickening time, porosity and permeability. Besides the API tests, microstructural characterizations were performed after 28 days of the slurries, X-ray diffraction (XRD) and scanning electron microscopy (SEM)
Resumo:
Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion
Resumo:
The use of binders in the soil for the production of solid bricks is an old construction technique that has been used by several civilizations over time. At the same time, the need for environmental preservation and the tendency of scarcity of natural resources make the construction invest in researching new concepts, methods and materials for building systems for the sustainability of their economic activities. Thus arises the need to obtain building materials with low power consumption, capable of reducing the growing housing shortage of rural and urban population. Currently, research has been conducted on this topic to better understand the cementitious and pozzolanic reactions that occur in the formation of the microstructure of the soil-cement when added to other materials such as, for example, lime, and the relationship between microstructure and formed interfaces with the physical, mechanical and chemical analysis in compounds made from these ternary compositions. In this context, this study aimed to analyze the results of the influence of the incorporation of lime to the soil-cement to form a ternary mixture to produce soil-cement bricks and mortar without structural purposes. From the inclusion of contents of 6 %, 8 %, 10% and 12% lime to the soil, and soil-cement mixes in amounts of 2 %, 3 %, 4 % and 5 % were shaped-bodies of -cylindrical specimens to determine the optimum moisture content and maximum dry apparent specific weight. Then they were cured, and subjected to the tests of compressive strength, absorption and durability modified. Compositions obtained the best results in the tests performed on the bodies-of-proof cylindrical served as a parameter for molding of solid bricks, which underwent the same experimental methodology previously cited. The raw materials used, as well as compositions in which the bricks were molded solid, were characterized by physical and chemical tests, X-ray diffraction and scanning electron microscopy. The results obtained in the study indicate that the compositions studied, that showed the best results in terms of compressive strength, water absorption and durability ternary composition was soil, 10 % cement and 2 % lime