107 resultados para Gráfico de controle MCMAX
Resumo:
In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
This work deals with the development of an experimental study on a power supply of high frequency that provides the toch plasmica to be implemented in PLASPETRO project, which consists of two static converters developed by using Insulated Gate Bipolar Transistor (IGBT). The drivers used to control these keys are triggered by Digital Signal Processor (DSP) through optical fibers to reduce problems with electromagnetic interference (EMI). The first stage consists of a pre-regulator in the form of an AC to DC converter with three-phase boost power factor correction which is the main theme of this work, while the second is the source of high frequency itself. A series-resonant inverter consists of four (4) cell inverters operating in a frequency around 115 kHz each one in soft switching mode, alternating itself to supply the load (plasma torch) an alternating current with a frequency of 450 kHz. The first stage has the function of providing the series-resonant inverter a DC voltage, with the value controlled from the power supply provided by the electrical system of the utility, and correct the power factor of the system as a whole. This level of DC bus voltage at the output of the first stage will be used to control the power transferred by the inverter to the load, and it may vary from 550 VDC to a maximum of 800 VDC. To control the voltage level of DC bus driver used a proportional integral (PI) controller and to achieve the unity power factor it was used two other proportional integral currents controllers. Computational simulations were performed to assist in sizing and forecasting performance. All the control and communications needed to stage supervisory were implemented on a DSP
Resumo:
The Methods for compensation of harmonic currents and voltages have been widely used since these methods allow to reduce to acceptable levels the harmonic distortion in the voltages or currents in a power system, and also compensate reactive. The reduction of harmonics and reactive contributes to the reduction of losses in transmission lines and electrical machinery, increasing the power factor, reduce the occurrence of overvoltage and overcurrent. The active power filter is the most efficient method for compensation of harmonic currents and voltages. The active power filter is necessary to use current and voltage controllers loop. Conventionally, the current and voltage control loop of active filter has been done by proportional controllers integrative. This work, investigated the use of a robust adaptive control technique on the shunt active power filter current and voltage control loop to increase robustness and improve the performance of active filter to compensate for harmonics. The proposed control scheme is based on a combination of techniques for adaptive control pole placement and variable structure. The advantages of the proposed method over conventional ones are: lower total harmonic distortion, more flexibility, adaptability and robustness to the system. Moreover, the proposed control scheme improves the performance and improves the transient of active filter. The validation of the proposed technique was verified initially by a simulation program implemented in C++ language and then experimental results were obtained using a prototype three-phase active filter of 1 kVA
Resumo:
Postsurgical complication of hypertension may occur in cardiac patients. To decrease the chances of complication it is necessary to reduce elevated blood pressure as soon as possible. Continuous infusion of vasodilator drugs, such as sodium nitroprusside (Nipride), would quickly lower the blood pressure in most patients. However, each patient has a different sensitivity to infusion of Nipride. The parameters and the time delays of the system are initially unknown. Moreover, the parameters of the transfer function associated with a particular patient are time varying. the objective of the study is to develop a procedure for blood pressure control i the presence of uncertainty of parameters and considerable time delays. So, a methodology was developed multi-model, and for each such model a Preditive Controller can be a priori designed. An adaptive mechanism is then needed for deciding which controller should be dominant for a given plant
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS¡APPC). In the VS¡APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol
Resumo:
Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.
Resumo:
A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics
Resumo:
This work proposes the design, the performance evaluation and a methodology for tuning the initial MFs parameters of output of a function based Takagi-Sugeno-Kang Fuzzy-PI controller to neutralize the pH in a stirred-tank reactor. The controller is designed to perform pH neutralization of industrial plants, mainly in units found in oil refineries where it is strongly required to mitigate uncertainties and nonlinearities. In addition, it adjusts the changes in pH regulating process, avoiding or reducing the need for retuning to maintain the desired performance. Based on the Hammerstein model, the system emulates a real plant that fits the changes in pH neutralization process of avoiding or reducing the need to retune. The controller performance is evaluated by overshoots, stabilization times, indices Integral of the Absolute Error (IAE) and Integral of the Absolute Value of the Error-weighted Time (ITAE), and using a metric developed by that takes into account both the error information and the control signal. The Fuzzy-PI controller is compared with PI and gain schedule PI controllers previously used in the testing plant, whose results can be found in the literature.
Resumo:
The main purpose of this work is to develop an environment that allows HYSYS R chemical process simulator communication with sensors and actuators from a Foundation Fieldbus industrial network. The environment is considered a hybrid resource since it has a real portion (industrial network) and a simulated one (process) with all measurement and control signals also real. It is possible to reproduce different industrial process dynamics without being required any physical network modification, enabling simulation of some situations that exist in a real industrial environment. This feature testifies the environment flexibility. In this work, a distillation column is simulated through HYSYS R with all its variables measured and controlled by Foundation Fieldbus devices
Resumo:
Every day, water scarcity becomes a more serious problem and, directly affects global society. Studies are directed in order to raise awareness of the rational use of this natural asset that is essential to our survival. Only 0.007% of the water available in the world have easy access and can be consumed by humans, it can be found in rivers, lakes, etc... To better take advantage of the water used in homes and small businesses, reuse projects are often implemented, resulting in savings for customers of water utilities. The reuse projects involve several areas of engineering, like Environmental, Chemical, Electrical and Computer Engineering. The last two are responsible for the control of the process, which aims to make gray water (soapy water), and clear blue water (rain water), ideal for consumption, or for use in watering gardens, flushing, among others applications. Water has several features that should be taken into consideration when it comes to working its reuse. Some of the features are, turbidity, temperature, electrical conductivity and, pH. In this document there is a proposal to control the pH (potential Hydrogen) through a microcontroller, using the fuzzy logic as strategy of control. The controller was developed in the fuzzy toolbox of Matlab®
Resumo:
An alternative nonlinear technique for decoupling and control is presented. This technique is based on a RBF (Radial Basis Functions) neural network and it is applied to the synchronous generator model. The synchronous generator is a coupled system, in other words, a change at one input variable of the system, changes more than one output. The RBF network will perform the decoupling, separating the control of the following outputs variables: the load angle and flux linkage in the field winding. This technique does not require knowledge of the system parameters and, due the nature of radial basis functions, it shows itself stable to parametric uncertainties, disturbances and simpler when it is applied in control. The RBF decoupler is designed in this work for decouple a nonlinear MIMO system with two inputs and two outputs. The weights between hidden and output layer are modified online, using an adaptive law in real time. The adaptive law is developed by Lyapunov s Method. A decoupling adaptive controller uses the errors between system outputs and model outputs, and filtered outputs of the system to produce control signals. The RBF network forces each outputs of generator to behave like reference model. When the RBF approaches adequately control signals, the system decoupling is achieved. A mathematical proof and analysis are showed. Simulations are presented to show the performance and robustness of the RBF network
Resumo:
This work presents the design and construction of an X-Y table of two degrees of freedom, as well as the development of a fuzzy system for its position and trajectory control. The table is composed of two bases that move perpendicularly to each other in the horizontal plane, and are driven by two DC motors. Base position is detected by position sensors attached to the motor axes. A data acquisition board performs the interface between a laptop and the plant. The fuzzy system algorithm was implemented in LabVIEW® programming environment that processes the sensors signals and determines the control variables values that drive the motors. Experimental results using position reference signals (step type signal) and straight and circular paths reference signals are presented to demonstrate the dynamic behavior of fuzzy system
Resumo:
Hypertension is a dangerous disease that can cause serious harm to a patient health. In some situations the necessity to control this pressure is even greater, as in surgical procedures and post-surgical patients. To decrease the chances of a complication, it is necessary to reduce blood pressure as soon as possible. Continuous infusion of vasodilators drugs, such as sodium nitroprusside (SNP), rapidly decreased blood pressure in most patients, avoiding major problems. Maintaining the desired blood pressure requires constant monitoring of arterial blood pressure and frequently adjusting the drug infusion rate. Manual control of arterial blood pressure by clinical personnel is very demanding, time consuming and, as a result, sometimes of poor quality. Thus, the aim of this work is the design and implementation of a database of tuned controllers based on patients models, in order to find a suitable PID to be embedded in a Programmable Integrated Circuit (PIC), which has a smaller cost, smaller size and lower power consumption. For best results in controlling the blood pressure and choosing the adequate controller, tuning algorithms, system identification techniques and Smith predictor are used. This work also introduces a monitoring system to assist in detecting anomalies and optimize the process of patient care.