88 resultados para Fonte alternativa de energia, Brasil
Resumo:
With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique
Resumo:
The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values
Resumo:
In energy systems, the balance of entrances, exits and losses are fundamental to rationalize the energy consumption, independently of the source (sun, natural gas, wind, water, firewood or oil). This estimate is important so much in the phase of project of the facilities, as in the exploration or operation. In the project phase it indicates the energy needs of the process and the contribution of the energy in the cost of the product and the capacity of storage of the fuel and in the operation phase it allows to evaluate the use of the energy in the process of it burns, showing the weak points that should suffer intervention to improve the efficiency. With this tool, it can be implemented routines of calculation of thermal balances in ovens of it burns of structural ceramic, in way to generate an optimized mathematical model for application in the current and promising structural ceramic brazilian industry. The ceramic oven in study is located in the metropolitan area of Natal (Rio Grande do Norte) and it is a continuous oven of the type wagons tunnel, converted of firewood for natural gas and it produces blocks of red ceramic. The energy balance was applied in the oven tunnel before and after the conversion and made the comparisons of the energy efficiencies (it burns to the firewood and it burns to natural gas), what showed that the gaseous fuel is more efficient when we burn structural ceramic in ovens tunnels. When we burn natural gas, the requested energy is smaller and better used. Tests were accomplished in the burned product that showed the best quality of the burned brick with natural gas. That quality improvement makes possible to accomplish new interventions for the most rational use of the energy in the oven tunnel of the Ceramic in study and in the industries of structural ceramic of the whole Brazil, that need control tools of burning and of quality
Resumo:
The objective of this scientific article is to introduce the opportunities of implementation of cleaner production (CP) in a shrimp culture farm. The methodology used for this was exploratory research implemented in a production unit located in the Northeast Brazil. The scientific article approaches since generic aspects of the technique about the management to use water, energy and the effluent characterization of this productive activity. It discusses quantitative aspects, environmental questions and chances of P+L during the productive process phases. The results points to input economy in the form of feed, soil correctives, medicines, and energy applied to the process, which range from 4% to 27%, emphasizing the small profit should be viewed as a source of considerable environment return. The authors conclude for the adoption property of this technique in this agribusiness segment, point out to the management importance of the input dosage in the quality of the final effluent, besides the adoption of a physical-chemistry remediation mechanism to the residual of Sodium metabissulphite used in the process of shrimp caught
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In recent decades, humanity has become increasingly concerned with environmental problems. Proofs of this are increasing initiatives in civil society organizations, private institutions and government actions, either local, state or national actions to promote environmental protection. The goal of this research is to contribute to the formation of citizens more aware of their responsibilities to sustainable development issues, simultaneously to their learning of physics in the secondary school. Thus, we have designed a research project that aims to evaluate the effectiveness of the adoption of the concept of sustainable development as a central theme in physics classes in high school. From this goal, we designed, implemented and evaluate lesson plans that aim not only to construct and apply the concept of energy, but also to understand their transformations and conservation law, as well as their processes of production, distribution and consume in the context of physical laws in which it is involved. Then, it was deliberately provided to students, during classes, to read, interpret and produce texts, by this way being able to think and start to have a critical view of the world around him, as well as absorb the energy concept and understand his occurrence in phenomena of nature and in technologies. The approach used for this was that constraining science, technology, society and environment - STSE. This teaching methodology has been applied in the IFRN Ipanguaçu campus, for students of two classes of first year of high school integrated course in agroecology and in technical computing. The survey results show the effectiveness of both methods with respect to the viewpoints of students in relation to the guidelines of sustainable development and the learning of physics content proposed. It is hoped with this dissertation to contribute to the formation of future men and women as citizens environmentally friendly, but also as a source of inspiration for teachers who wish to foster in its students such a critical position about civic education, from their classes
Resumo:
As part of a broader project, Diversity and Distribution Patterns of Floristic and Faunistic composition of remnants of Potiguar s Atlantic Forest, as subsidies to conservation , that subsidizes a group of institutional research, This study aimed to evaluate the structure of the assemblage of lizards a remnant of the of the northern Atlantic Forest, identifying ecological factor (s) that contribute to the coexistence of sympatric species. Additionally, we studied the thermal ecology and thermoregulatory behavior of umbrophily and heliophily species live the Parque Estadual Mata da Pipa (PEMP), a remnant of Atlantic forest located in the Tibau do Sul municipality of, Rio Grande do Norte State, Brazil. It is one of the largest remnants of the Atlantic Forest and has an area of approximately 290 ha. The study was performed by four excursions to the field for 20 days each, when active search and pitfalls traps were used to record and colleted specimens in different habitats of the area. We recorded the presence of 19 species of lizards, of which seven are typical of forest areas, three are endemic Atlantic Forest, these two northern and one are new record for the Rio Grande do Norte. The use of resources, the results showed that phylogenetically related species do not always use a similar way the resources available; the feeding niche was the segregated component of the species that overlapped extensively in the use of space and vice versa. To examine the thermal ecology and thermoregulatory behavior of Kentropyx calcarata and Coleodactylus natalensis, we recorded the clocal temperature (Tc), oh the substrate (Ts) and of the air (Ta) to investigate what of these are the source of heat more important to the temperature s body of these lizards. Behavioral observations were conducted to analyze strategies to optimize the acquisition of heat. The air temperature explained most strongly to variation in body temperature of K. calcarata, while the temperature of the substrate to C. natalensis. As for the behavioral observations, they confirmed that K. calcarata is an active thermoregulatory; C. natalensis is a passive thermoregulatory.
Resumo:
The wide distribution along the Brazilian coast of specie Sotalia guianensis has been growing interest in searchers on the ecology of this species, addition to commercial interests by whalewatching. This work described the accoustic repertory of S. guianensis and their behavior associated and found if underwater noises affect this repertorie in Pipa-RN. It were analyzed 18:49h of recordings maked between april and june/2009. It were found 3258 whistles, 289 calls, 873 clicks and no gargle. The frequencies range of guiana dolphins was 1 a 48kHz and may be related to system response recorder and population s regionalization. The frequencies overlaps the noise made by motorboats, schooners and water bomb. The behavior travelling ocurred siletly in 72,58% and socialization presented no sound (56,4%) and presence of sound (43,6%). This great absence of sound may be relacioned to saving energy, probably because in this behaviors they can use physical and visual contacts. The foraging presented highest records of all class noise with 46,84% clicks, 33,84% whistles and 9,02% calls. All this sounds occurred differently in each behavior (travelling: x2 = 134,35 df = 3 p = 0,0001; foraging: x2 = 19,83 df = 3 p= 0,00018 and socialization x2 = 60,35 df = 3 p = 0,0001). It was possible to determine that underwater noise cause changes in the repertorie and does a considerable increase in whistle s number and reduce clicks. Also occurs changes in some whistles (FI: t=2,42, p=0,015; FF: t= -2,22, p=0,025), calls (FMI: t= -3,13, p=0,001; FMA: t= -3,49, p=0,0005; FD: t= -2,21, p=0,027; D: t=2,89, p=0,004) and clicks parameters (D: t= -3,85, p=0,0001; I: t= -5,32, p=0,0001) during presence of noise. These changes may be a strategy of these animals to win this sound barrier. We can not say which noise has more impact, ix however the water bomb seems to affect more the clicks and the motorboats seems to affect the others sounds. Little is know about auditive sensibility of this specie, but daily exposure to this noise may cause damage and this specie appears to have residence. The specie conservation is necessary because the population already seems to suffer damage as decrease in length of stay, number of individuals entering the inlet and the apparent diminution in the foragind during vessels presence and control standards and ambiental education can help. So, we can advance in knowledge about the ecology of this specie especially when it come to bioacoustics and their behaviors associated and reveals some of the impacts that the noise have brought to this population
Resumo:
The catalytic cracking of triglycerides presents itself as a possible alternative to the production of biofuels with low emission of pollutants. In this work were synthesized the SAPO-5, the catalysts for the cracking reaction of soybean oil is presented. The solids were powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG) and infrared spectroscopy (FTIR). The analyses indicated that the synthesis method has employed to obtain materials with high surface area and high acid. The soybean oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. The products obtained in the cracking of soybean oil were analyzed by distillation, acid number, infra-red spectroscopy, density, viscosity, carbon residue, cetane number determination and characterization. The analysis of the products obtained in the presence and in the absence of the SAPO-5 permitted to conclude that all the solids tested presented catalytic activity in the deoxygenation of final products only at the second step of the cracking process
Resumo:
In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents
Resumo:
The area of Education in Chemistry in Brazil has appeared over 30 years and its growth has been accelerated by the need of comprehension of the processes of teaching and learning in chemistry. Many researches, in this area, has among its investigation objects the teaching tools like teaching materials and the learning processes of students in high school and basic education, but when dealing with higher levels of education, they are seldom portrayed. This study aimed to investigate the General Chemistry textbooks with respect to approach the concept of energy; know the main ideas of graduate students in Chemistry on the relation of the concept of energy and chemical transformations; finally, developing a cicle of studies with the proposition of an approach wich inter-relate the concept of energy and its implications in the teaching-learning process of a chemical transformation. To do so, we used as instruments a questionnaire, press conference, conceptual map and experimental activities. All activities of the study cicle were videotaped and recorded, transcribed and the results organized in tables. For the activities of the study cicle texts that have been developed and inter-relating concepts of chemistry and energy, which in turn gave theoretical support to the activities in the cycle. In the analysis it was used as a theoretical content the analysis of Laurence Bardin. The results revealed that the analysis of the book might be perceived that not always the concept of energy is used in order to generate the abstract thought of chemical transformations, but that the main macroscopic thermodynamic variables are present in the explanation of these transformations. During the study cicle, were studied two chemical reactions: the first one, made possible to approach the macroscopic dimension to quantify the concept of energy and the second one, made possible to demonstrate the macro and microscopic dimension of the concept of energy during a chemical transformation. In all reactions proposed, students used, in most of the times, as explanations, only macroscopic observations of the reactions under study and failed to realize that the concept of energy can be used to explain macro and microscopic chemical transformation. As a final action of the study cicle, students requested further discussion, to clarify the link between the concept of energy and the meanings constructed in the process of studying the reactions. This is done through an oral explanation, during the cycle, and registered in this thesis and attempts to show the interrelationship existing conceptual
Resumo:
The nanostructured molecular sieve SBA-15 was synthesized by the hydrothermal method, and modified with lanthanum with Si/La molar ratios of 25, 50, 75 and 100. The materials were evaluated as catalysts for the cracking of n-hexane model reaction. Type SBA- 15 and LaSBA-15 mesoporous materials were synthesized using tetraetilortosilicato as a source of silica, hydrochloric acid, heptahydrate lanthanum chloride and distilled water. Pluronic P123 triblock. polymer was used as structure template. The syntheses were carried out by 72 hours. The obtained SBA-15 samples were previously analyzed by thermogravimetry, in order to check the conditions of calcination for removal of organic template. Then, the calcined materials were characterized by X-ray diffraction, infrared spectroscopy, adsorption and desorption of nitrogen, scanning electron microscopy and X-ray microanalysis by dispersive energy. The acidity of the samples was determined using adsorption of n-bulinamina and desorption followed by thermogravimetry. It was found that the hydrothermal synthesis method was suitable for the synthesis of the SBA-15 mesoporous materials, with an excellent degree of hexagonal ordering. The reactions of catalytic cracking of n-hexane were carried out using a fixed bed continuous flow microreactor, coupled on-line to a gas chromatograph. From the catalytic evaluation, it was observed that the mesoporous materials containing lanthanum showed different results for the reaction of cracking of nhexane compared to the unmodified mesoporous material SBA-15. As a result of cracking was obtained as main products hydrocarbons in the range of C1 to C5. The catalyst that showed better properties in relation to the acidity and catalytic activity was LaSBA-15 with the ratio Si/La = 50
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The chemical recycling of polyolefins has been the focus of increasing attention owing potential application as a fuel and as source chemicals. The use of plastic waste contributes to the solution of pollution problems.The use of catalysts can enhance the thermal degradation of synthetic polymers, which may be avaliated by Themogravimetry (TG) and mass spectrometry (MS) combined techniques. This work aims to propose alternatives to the chemistry recycling of low-density polyethylene (LDPE) on mesoporous silica type SBA-15 and AlSBA-15.The mesoporous materials type SBA-15 and AlSBA-15 were synthesized through the hydrothermal method starting from TEOS, pseudobohemite, cloridric acid HCl and water. As structure template was used Pluronic P123. The syntheses were accomplished during the period of three days. The best calcination conditions for removal of the organic template (P123) were optimized by thermal analysis (TG/DTG) and through analyses of Xray diffraction (XRD), infrared spectroscopy (FT-IR), nitrogen adsorption and scanning electron microscopy (SEM) was verified that as much the hydrothermal synthesis method as the calcination by TG were promising for the production of mesoporous materials with high degree of hexagonal ordination. The general analysis of the method of Analog Scan was performed at 10oC/min to 500 oC to avoid deterioration of capillary with very high temperatures. Thus, with the results, we observed signs mass/charge more evident and, using the MID method, was obtained curve of evolution of these signals. The addition of catalysis produced a decrease in temperature of polymer degradation proportional to the acidity of the catalyst. The results showed that the mesoporous materials contributed to the formation of compounds of lower molecular weight and higher value in the process of catalytic degradation of LDPE, representing an alternative to chemical recycling of solid waste