68 resultados para Contagem de células


Relevância:

20.00% 20.00%

Publicador:

Resumo:

T. gondii is an obligate intracellular protozoan and the main cause of retinochoroiditis in humans. The aim of this study was to evaluate the effect of the antipsychotic drugs haloperidol and clozapine on the course of infection by T. gondii of cultured embryonic retinal cells. Embryo retinas of Gallus gallus domesticus (E12) were used for the preparation of mixed monolayer cultures of retinal cells. Cultures were maintained on plates of 96 and 24 wells by 37°C in DMEM medium supplemented with 5% fetal bovine serum for 2 days. After this period, cultures were simultaneously infected with tachyzoites of T. gondii and treated with the antipsychotics haloperidol and clozapine for 48 hours. Treatment effects were determined by both assessing cell viability with the MTT method and evaluating infection outcomes in slides stained with Giemsa. The treatment with haloperidol and clozapine cells infected with T. gondii resulted in higher viability of these cells, suggesting a possible prevention of neuronal degeneration induced by T. gondii. Additionally, intracellular replication of this protozoan in cells treated with haloperidol and clozapine were significantly reduced, possibly by modulation of the parasite s intracellular calcium concentration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aims the preparation of filmes of strontium-doped lanthanum manganite (perovskita) yttria-stabilized zirconia (LSM-SDC) films deposited on substrate of YSZ by means of spin coating technique having as principal objective their application to solid oxide fuel cells of intermediate temperature. La0,8Sr0,2MnO3 and Ce0,8Sm0,2O1,9 were obtained by modified Pechini method by use of gelatin which act as polymerization agent. The powders obtained were characterized by Xray fluorescence, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The results obtained by X-ray fluorescence showed that the route adopted for obtention of powders was effective in the obtention of the compositions with close values to the stoichiometrics. Ethyl cellulose was used as pore-forming agent and mixed with the LSM-SDC powders in weight proportions of 1:24, 2:23 and 1:9. The films were sintered at 1150 °C for 4 h and characterized by X-ray diffraction and scanning electron microscopy technique (SEM) and atomic force. The phases quantification of the precursory powders and of the obtained films was carried through Rietveld method. According with the analysis of SEM, as the content of ethyl cellulose was increased, the pore distribution in films become more uniform and the pore size reduced. The methodology used for the obtention of the films was very efficient, considering a material was obtained with characteristics that were proper to the application as electrolyte/cathode system to solid oxide fuel cells

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regeneration of bone defects with loss of substance remains as a therapeutic challenge in the medical field. There are basically four types of grafts: autologous, allogenic, xenogenic and isogenic. It is a consensus that autologous bone is the most suitable material for this purpose, but there are limitations to its use, especially the insufficient amount in the donor. Surveys show that the components of the extracellular matrix (ECM) are generally conserved between different species and are well tolerated even in xenogenic recipient. Thus, several studies have been conducted in the search for a replacement for autogenous bone scaffold using the technique of decellularization. To obtain these scaffolds, tissue must undergo a process of cell removal that causes minimal adverse effects on the composition, biological activity and mechanical integrity of the remaining extracellular matrix. There is not, however, a conformity among researchers about the best protocol for decellularization, since each of these treatments interfere differently in biochemical composition, ultrastructure and mechanical properties of the extracellular matrix, affecting the type of immune response to the material. Further down the arsenal of research involving decellularization bone tissue represents another obstacle to the arrival of a consensus protocol. The present study aimed to evaluate the influence of decellularization methods in the production of biological scaffolds from skeletal organs of mice, for their use for grafting. This was a laboratory study, sequenced in two distinct stages. In the first phase 12 mice hemi-calvariae were evaluated, divided into three groups (n = 4) and submitted to three different decellularization protocols (SDS [group I], trypsin [Group II], Triton X-100 [Group III]). We tried to identify the one that promotes most efficient cell removal, simultaneously to the best structural preservation of the bone extracellular matrix. Therefore, we performed quantitative analysis of the number of remaining cells and descriptive analysis of the scaffolds, made possible by microscopy. In the second stage, a study was conducted to evaluate the in vitro adhesion of mice bone marrow mesenchymal cells, cultured on these scaffolds, previously decellularized. Through manual counting of cells on scaffolds there was a complete cell removal in Group II, Group I showed a practically complete cell removal, and Group III displayed cell remains. The findings allowed us to observe a significant difference only between Groups II and III (p = 0.042). Better maintenance of the collagen structure was obtained with Triton X-100, whereas the decellularization with Trypsin was responsible for the major structural changes in the scaffolds. After culture, the adhesion of mesenchymal cells was only observed in specimens deccelularized with Trypsin. Due to the potential for total removal of cells and the ability to allow adherence of these, the protocol based on the use of Trypsin (Group II) was considered the most suitable for use in future experiments involving bone grafting decellularized scaffolds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental pulp stem cells have been widely investigated because of their ability to differentiate into both dental and non-dental cells, with potential use in therapies involving tissue engineering. The technique of cell cryopreservation represents a viable alternative for the conservation of these cells, since it stops reversibly, in a controlled manner, all of cell biological functions in an ultra low temperature. The present study aimed to evaluate, using in vitro experiments, the influence of a cryopreservation protocol on the biologic acti vity of stem cells from human exfoliated deciduous teeth (SHED). Cells obtained from the pulp of three deciduous teeth on end-stage exfoliation or with indicated extraction were expanded in α-MEM culture medium supplemented with antibiotics and 15% fetal bovine serum. At second subculture (P2), a group of cells were submitted to cryopreservation for 30 days in 10% DMSO diluted in fetal bovine serum, at -80º C, while the remind cells continued under normal conditions of cell culture. Cell proliferation was evaluated in both groups (not cryopreserved or cryopreserved) by Trypan blue stain essay at intervals of 24, 48 and 72h after plating. Cell cycle analysis of SHEDs submitted or not to the cryopreservation protocol was performed in the same intervals. Events related to cell death were studied by Annexyn V and PI expression under flow cytometry at the intervals of 24 and 72h. The presence of nuclear morphological changes was evaluated by DAPI staining at 72h interval. It was observed that both groups exhibited an upward cell proliferation curve, without considerable changes in cell viability throughout the experiment. The distribution of cell in the cell cycle phasis was consistent with cell proliferation in both groups. There were no nuclear morphological damages in the end range of the experiment. therefore, it is concluded that the proposed cryopreservation protocol is efficient for storing the studied cell type, allowing its use in future experimental studies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of hepatic stellate cells (HSC) is considered the most important event in hepatic fibrogenesis. The precise mechanism of this process is unknown in autoimmune hepatitis (AIH), and more evidence is needed on the evolution of fibrosis. The aim of this study was to assess these aspects in children with type 1 AIH. We analyzed 16 liver biopsy samples from eight patients, paired before treatment and after clinical remission, performed an immunohistochemical study with anti-actin smooth muscle antibody and graded fibrosisand inflammation on a scale of 0:4 (Batts and Ludwig scoring system). We observedthere was no significant reduction in fibrosis scores after 24± 18 months (2.5 ± 0.93 vs. 2.0± 0.53, P = 0.2012). There was an important decrease in inflammation: portal (2.6 ±0.74 vs. 1.3± 0.89, P = 0.0277), periportal/periseptal (3.0 ±0.76 vs. 1.4 ± 1.06, P = 0.0277), and lobular (2.8 ± 1.04 vs. 0.9± 0.99, P =0.0179). Anti-actin smooth muscle antibodies were expressed in the HSC of the initial biopsies (3491.93 ±2051.48 lm2), showing a significant reduction after remission (377.91 ±439.47 lm2) (P = 0.0117). HSC activation was demonstrated in the AIH of children. The reduction of this activation after clinical remission, which may precede a decrease in fibrosis, opens important perspectives in the follow-up of AIH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low level laser therapy (LLLT) has shown to be effective in promoting the proliferation of different cells in vitro, including keratinocytes, osteoblasts, endothelial cells and stem cells. It has been speculated that the biostimulatory effect of LLLT could cause undesirable enhancement of tumor growth in neoplastic diseases, since the malignant cells are more susceptible to proliferative stimuli. Within this context, this study evaluated the effect of LLLT on epidermoid carcinoma of the tongue cell line (SCC25) proliferation and invasion. Cultured cells were irradiated with an InGaAIP diode laser, 660nm, 30mW using two energy densities (0.5J/cm2 and 1.0J/cm2). Proliferative activity was assessed through trypan blue staining method and through cell cycle analysis using flow cytometry. The invasive potential was measured through cell invasion assay using matrigel. Cyclin D1, E-cadherin, -catenin and MMP-9 expressions were analyzed by immunofluorescence and flow cytometry and related to the investigated biological activities. Proliferation curve demonstrated that SCC25 irradiated with 1.0J/cm2 had the highest proliferative rate when compared to the control group and the group irradiated with 0.5J/cm2 (p<0.05). LLLT affected cell cycle distribution and energy density of 1.0 J/cm2 promoted a higher percentage of cells in S/G2/M phases, with statistically significant differences at 24h interval (p<0.05). LLLT, mainly with 1.0J/cm2, revealed significantly higher potential for invasion and influenced the expression of cyclin D1, E-cadherin, -catenin and MMP-9, promoting the malignant phenotype. In conclusion, our results indicate that LLLT has an important stimulatory effect on proliferation and invasion of SCC25 cells, likely due to altered expression of proteins associated with these processes