66 resultados para Capacitores e filtros para baixa tensão
Resumo:
In this work a biodegradable composite using the carnauba straw s powder as reinforcement on chitosan matrix polymeric were manufactured. Firstly, were carried out the chemistry characterization of the carnauba straw s powder before and after treatments with NaOH and hexane. Goering and Van Soest method (1970), flotation test, moisture absorption, FTIR, TG/DTG, DSC and SEM have also being carried out. Composites were developed with variations in granulometry and in powder concentrations. They were characterized by TG/DTG, SEM and mechanicals properties. The results of chemical composition showed that the carnauba straw s powder is composed of 41% of cellulose; 28,9% of hemicellulose and 14% of lignin.The flotation test have indicated that the chemical treatment with NaOH decreased the powder s hidrophilicity.The thermal analysis showed increased of thermal stability of material after treatments. The results of FTIR and SEM revealed the removal of soluble materials from the powder (hemicelluloses and lignin), the material became rougher and clean. The composites obtained showed that the mechanicals properties of the composites were decreased in respect at chitosan films, and the composites with the powder at 150 Mesh showed less variation in the modulus values. The speed test of 10 mm/min showed the better reproducibility of the results and is in agreement to the standard ASTM D638. The SEM analysis of fracture showed the low adhesion between the fiber/matrix. The increase of volume of powder in the composite caused a decrease in values of stress and strain for the samples with untreated powder and treated with hexane. The composite with 50% of the powder s treated in NaOH didn t have significant variation in the values of stress and strain as compared with the composites with 10% of the powder, showing that the increase in the volume of fiber didn t affect the stress and strain of the composite. Thereby, it is concluded that the manufacture of polymeric composites of chitosan using carnauba straw s powder can be done, without need for pre-treatment of reinforcement, become the couple of carnauba straw s powder-chitosan a good alternative for biodegradable composites
Resumo:
Catalytic processes are widely present in everyday life. This results in large number of studies seeking materials that may combine the low cost catalytic efficiency. Based on this assumption, the clays have long been used as catalysts, with its huge availability, diversity and possibility of improving their properties from structural changes, primarily responsible for this great use. Among the natural clays, vermiculite due to their characteristic properties (high cation exchange capacity and expansion), is suitable for various applications including as catalysts and catalyst supports. In this work, the acid leaching of clay vermiculite was performed, coming from Santa Luzia-PB, with nitric acid (2, 3 and 4 mol / L) and subsequent calcination of the materials obtained. The materials were named as Vx/400, where x is the acid concentration employed and 400 used in calcination temperature. The effectiveness of changes made was determined by XRD techniques, FT-IR, EDS, TG/DTG, nitrogen physisorption and DTP of n-butylamine. Acid leaching has improved some properties of the clay - specific area and acidity - but the control of the acid concentration used is of vital importance, since the highest concentration caused the partial destruction of vermiculite entailing a decline in their properties. For analysis of the catalytic activity of the modified clay was made a comparative study with the SBA -15 mesoporous materials, synthesized via hydrothermal method, using the pyrolysis of low density polyethylene (LDPE). The results showed that the acid plays a fundamental role in the conversion of the polymer into smaller molecules, the material V3/400 was more selective for the source monomer (ethylene) due to their increased acidity, which promotes more breaks bonds in the polymeric chain, while materials and V0/400 V2/400, lower acidity, showed higher selectivity to light hydrocarbons, the range of fuel (41.96 and 41.23%, respectively), due to less breakage and secondary condensation reactions chains; already V4/400 SBA-15/550 and resulted in lower percentages of light hydrocarbons and the partial destruction of the structure and low acidity, respectively, responsible for the inefficiency of materials
Resumo:
Hydrogeological prospecting in Northeast Brazil and in other crystalline terrains has been developed on the basis of structural and regional geology concepts that date back to the 50-60 decades and, as such, demand a natural re-evaluation and update. In this kind of terrain, the percolation and accumulation of ground water are controlled by fractures and other types of discontinuities, such as foliations and geological contacts that, through weathering, impart porosity and permeability to the rocks, allowing water flow and storage. Several factors should be considered in the process of locating water wells, as discussed in the literature. Among these, the kind of structures, fracture geometry (including aperture and connectivity) and their geological and chronological context. It is important to correlate fracture systems with the regional neotectonic framework. Fractures at low angle (sub parallel) with the principal stress axis (s1) are those which tend to open (actually they work as tension joints) and, in principle, would present major hydric potential; in the opposite side, fractures at high angle to s1 would behave as closed by a compressional component. Fractures diagonal to the compression and tension axes correspond to shear fractures and, due to their connectivity with second fractures, are also important in terms of hydric potential. Uplift followed by terrain denudation leads to decompression and a general tendency to open (aided by weathering processes) fractures and other rock discontinuities, at different orientations. Low angle fractures, formed in this context, are equally important to increase connectivity, collection of water and recharge of the aquifer systems. In a general way, an opening component (neotectonic or by terrain decompression) and several models to increase fracture connectivity correlate with a greater hydric potential of these structures. Together with parallel research, this thesis addresses models of ground water occurrence in crystalline terrains, either improving well established concepts like the (Riacho-Fenda model), but also stressing other possibilities, like the role of alluvium and paleo-regoliths (the Calha Elúvio-Aluvionar model) and of strongly altered, permo-porous zones placed at variable depths below the present surface, flanking several types of discontinuities, especially interconnected fracture arrays (the Bolsões de Intemperismo model). Different methodological approaches are also discussed in order to improve success rates in the location of water wells in crystalline terrains. In this methodological review, a number of case studies were selected in the eastern domain of the State of Rio Grande do Norte, involving the localities of Santa Cruz, Santo Antônio, Serrinha, Nova Cruz, Montanhas, Lagoa de Pedras and Lagoa Salgada. Besides the neotectonic analysis of brittle structures, this Thesis addresses the validation of remote sensing as a tool for ground water prospecting. Several techniques were tested in order to detect and select areas with higher potential for ground water accumulation, using Landsat 5-TM and RADARSAT images, besides conventional aerial photos. A number of filters were tested to emphasize lineaments in the images, improving their discrimination, to identify areas with higher overburden humidity, which could reflect subsurface water accumulation, as well as alluvium and other sedimentary covers that might act as recharge zones. The work started with a regional analysis with the orbital images, followed by analysis of aerial photos, up to a detailed structural study of rock exposures in the terrain. This last step involved the analysis of outcrops surrounding wells (in a ray of approximately 10 to 100 m) with distinct productivities, including dry examples. At the level required for detail, it was not possible to accomplish a statistical approach using the available well data catalogs, which lack the desired specific information. The methodology worked out in this Thesis must undergo a testing phase through location of new water wells. An increase in the success rates as desired will led to a further consolidation step with wider divulgation of the methodology to private companies and governmental agencies involved in ground water prospecting in crystalline terrains
Resumo:
In spite of significant study and exploration of Potiguar Basin, easternmost Brazilian equatorial margin, by the oil industry, its still provides an interesting discussion about its origin and the mechanisms of hydrocarbon trapping. The mapping and interpretation of 3D seismic reflection data of Baixa Grande Fault, SW portion of Umbuzeiro Graben, points as responsible for basin architecture configuration an extensional deformational process. The fault geometry is the most important deformation boundary condition of the rift stata. The development of flat-ramp geometries is responsible for the formation of important extensional anticline folds, many of then hydrocarbon traps in this basin segment. The dominant extensional deformation in the studied area, marked by the development of normal faults developments, associated with structures indicative of obliquity suggests variations on the former regime of Potiguar Basin through a multiphase process. The changes in structural trend permits the generation of local transpression and transtension zones, which results in a complex deformation pattern displayed by the Potiguar basin sin-rift strata. Sismostratigraphic and log analysis show that the Baixa Grande Fault acts as listric growing fault at the sedimentation onset. The generation of a relay ramp between Baixa Grande Fault and Carnaubais Fault was probably responsible for the balance between subsidence and sedimentary influx taxes, inhibiting its growing behaviour. The sismosequences analysis s indicates that the extensional folds generation its diachronic, and then the folds can be both syn- and post-depositional
Resumo:
The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry
Resumo:
This study presents new stress orientations and magnitudes from the Potiguar basin in the continental margin of Brazil. We analyzed breakout and drilled induced fractures derived from resistivity image logs run in ten oil wells. We also used direct Shmin measurements determined from hydraulic fractures and rock strength laboratory analysis. In addition, we compared these results with 19 earthquake focal mechanisms located in the crystalline basement. We observed that stress directions and magnitudes change across the basin and its basement. In the basin, the SHmax gradient of 20.0 MPa/km and the SHmax/Shmin ratio of 1.154 indicate a normal stress regime from 0.5 to 2.0 km, whereas the SHmax gradient of 24.5MPa/km and the SHmax/Shmin ratio of 1.396 indicate a strike slip stress regime from 2.5 to 4.0 km. The deeper strike-slip stress regime in the basin is similar to the regime in the basement at 1-12 km deep. This stress regime transition is consistent with an incipient tectonic inversion process in the basin. We also noted that the SHmax direction rotates from NW SE in the western part of the Potiguar basin to E W in its central and eastern part, following roughly the shoreline geometry. It indicates that local factors, as density contrast between continental and oceanic crust and sediment loading at the continental shelf influence the stress field. The concentration of fluid pressure in faults of the lowpermeability crystalline basement and its implications to establish a critically stressed fault regime in the basement is also discussed