49 resultados para troca iônica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil exploration is one of the most important industrial activities of modern society. Despite its derivatives present numerous applications in industrial processes, there are many undesirable by-products during this process, one of them is water separated from oil, called water production, it is constituted by pollutants difficult to degrade. In addition, the high volume of generated water makes its treatment a major problem for oil industries. Among the major contaminants of such effluents are phenol and its derivatives, substances of difficult natural degradation, which due their toxicity must be removed by a treatment process before its final disposal. In order to facilitate the removal of phenol in wastedwater from oil industry, it was developed an extraction system by ionic flocculation with surfactant. The ionic flocculation relies on the reaction of carboxylate surfactant and calcium íons, yielding in an insoluble surfactant that under stirring, aggregates forming floc capable of attracting the organic matter by adsorption. In this work was used base soap as ionic surfactant in the flocculation process and evaluated phenol removal efficiency in relation to the following parameters: surfactant concentration, phenol, calcium and electrolytes, stirring speed, contact time, temperature and pH. The flocculation of the surfactant occurred in the effluent (initial phenol concentration = 100 ppm) reaching 65% of phenol removal to concentrations of 1300 ppm and calcium of 1000 ppm, respectively, at T = 35 °C, pH = 9.7, stirring rate = 100 rpm and contact time of 5 minutes. The permanence of the flocs in an aqueous medium promotes desorption of the phenol from the flake surface to the solution, reaching 90% of desorption at a time of 150 minutes, and the study of desorption kinetics showed that Lagergren model of pseudo-first order was adequate to describe the phenol desorption. These results shows that the process may configure a new alternative of treatment in regard the removal of phenol of aqueous effluent of oil industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil exploration is one of the most important industrial activities of modern society. Despite its derivatives present numerous applications in industrial processes, there are many undesirable by-products during this process, one of them is water separated from oil, called water production, it is constituted by pollutants difficult to degrade. In addition, the high volume of generated water makes its treatment a major problem for oil industries. Among the major contaminants of such effluents are phenol and its derivatives, substances of difficult natural degradation, which due their toxicity must be removed by a treatment process before its final disposal. In order to facilitate the removal of phenol in wastedwater from oil industry, it was developed an extraction system by ionic flocculation with surfactant. The ionic flocculation relies on the reaction of carboxylate surfactant and calcium íons, yielding in an insoluble surfactant that under stirring, aggregates forming floc capable of attracting the organic matter by adsorption. In this work was used base soap as ionic surfactant in the flocculation process and evaluated phenol removal efficiency in relation to the following parameters: surfactant concentration, phenol, calcium and electrolytes, stirring speed, contact time, temperature and pH. The flocculation of the surfactant occurred in the effluent (initial phenol concentration = 100 ppm) reaching 65% of phenol removal to concentrations of 1300 ppm and calcium of 1000 ppm, respectively, at T = 35 °C, pH = 9.7, stirring rate = 100 rpm and contact time of 5 minutes. The permanence of the flocs in an aqueous medium promotes desorption of the phenol from the flake surface to the solution, reaching 90% of desorption at a time of 150 minutes, and the study of desorption kinetics showed that Lagergren model of pseudo-first order was adequate to describe the phenol desorption. These results shows that the process may configure a new alternative of treatment in regard the removal of phenol of aqueous effluent of oil industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionic nitriding process presents some limitations related with the control of the thickness of the layer and its uniformity. Those limitations that happen during the process, are produced due to edge effects, damage caused by arcing arc and hollow cathode, mainly in pieces with complex geometry and under pressures in excess of 1 mbar. A new technique, denominated ASPN (active screen shapes nitriding) it has been used as alternative, for offering many advantages with respect to dc plasma conventional. The developed system presents a configuration in that the samples treated are surrounded by a large metal screen at high voltage cathodic potencials, (varying between 0 and 1200V) and currents up to 1 A. The sample is placed in floting potential or polarized at relatively lower bias voltages by an auxiliary source. As the plasma is not formed directly in the sample surface but in the metal screen, the mentioned effects are eliminated. This mechanism allows investigate ion of the transfer of nitrogen to the substrate. Optical and electronic microscopy are used to exam morphology and structure at the layer. X-ray difration for phase identification and microhardness to evaluate the efficiency of this process with respect to dc conventional nitriding