86 resultados para titânio


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rio do Peixe Basin represents a main basin of northeastern Brazil and pioneering work positioned the rocks of this basin in the Early Cretaceous. However, a recent study, based on integrated pollen analysis from three wells, found an unprecedented siliciclastic sedimentary section, in the region, of early Devonian age. Therefore, the present study aims a detailed petrographic and petrological analysis of this devonian section, in the Rio do Peixe Basin and proposes a diagenetic evolution, to understand the characteristics of the porous system, identify the main reservoir petrofacies with the main factors impacting on the quality of these rocks as reservoirs and a quick study on the provenance of this section. The petrographic study was based on samples obtained from subsurface and surface. The diagenetic evolution of petrofacies and its identification were based only on subsurface samples and the study of provenance was based on surface samples. The thin sections were prepared from sandstones, pelites and sandstones intercalated with pelites. The original detrital composition for this section is arcosean and the main diagenetic processes that affected these rocks occur in various depths and different conditions, which resulted in extensive diagenetic variety. The following processes were identified: early fracture and healing of grains; albitization of K-feldspar and plagioclase; siderite; precipitation of silica and feldspar; mechanical infiltration of clay and its transformation to illite/esmectite and illite; autigenesis of analcime; dissolution; autigenesis of chlorite; dolomite/ferrous dolomite/anquerite; apatite; calcite; pyrite; titanium minerals and iron oxide-hidroxide. The occurrence of a recently discovered volcanism, in the Rio do Peixe Basin, may have influenced the diagenetic evolution of this section. Three diagenetic stages affected the Devonian section: eo, meso and telodiagenesis. This section is compositionally quite feldspathic, indicating provenance from continental blocks, between transitional continental and uplift of the basement. From this study, we observed a wide heterogeneity in the role of the studied sandstones as reservoirs. Seven petrofacies were identified, taking into account the main diagenetic constituent responsible for the reduction of porosity. It is possible that the loss of original porosity was influenced by intense diagenesis in these rocks, where the main constituent for the loss of porosity are clays minerals, oxides and carbonate cement (calcite and dolomite)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inorganic actives, represented mainly by microfine zinc oxide and titanium dioxide, have shown great potential to protect against large UV spectrum. The aim of this study is the development, characterization and analysis of stability in the short term of microemulsions containing inorganic fotoprotection agents. The microemulsions identified by the phases diagram containing the metallic oxides were produced by two different methods and subjected to the centrifugation test and thermal stress cycles, and subsequently characterized by macroscopic evaluation, test dilution, electrical conductivity, pH, particle size, and zeta potential. This study highlights the influence of the metal oxides addition in the structure and distribution of micelles in the microemulsions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conversion of solar energy in electric with photo-voltaic cells has been carried through exclusively with devices of semiconducting junction. To put this situation comes moving for better in them last years, thanks to a new technology of production of known solar cells as Dye Solar Cell. This proposal aims at to develop a DSC having as dye lavonoides of the Capsicum frutescens (malagueta pepper). Front is considered to evaluate the photo-voltaic parameters varies it regions of the visible specter, as well as a good efficiency of conversion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanometric powders have special features that usually result in new properties, originating applications or expanding them in various fields of knowledge. Because having a high area/volume ratio, phenomena such as superficial strength of adsorption becomes greater than the weight of the powder which makes more difficult its handling. The high power of agglomeration of these powders requires study and development of equipments to enable its management into the plasma torch. The objective of this work is to develop a powder feeder which can solve the mainly problems about insertion of powder into the thermal spray developed in the laboratory of plasmas, which are carried out with plasma torch arc not transferred (plasma spray). Therefore, it was made a aluminum s powder feeder and tests were performed to verify their operation and determine its rate of deposition by spraying powders of niobium pentoxide (Nb2O5) and titanium dioxide (TiO2) with particle sizes less than 250 mesh (<0.063 mm). We used masses of 0.5 g - 1.0 g and 1.5 g of each powder in tests lasting 15 seconds - 20 to 25 seconds for each mass. The tests were performed in two ways: at atmospheric pressure using argon gas with a flow of 9 l / min as carrier gas and through a Venturi pipe also using argon gas with a flow of 9 l / min as carrier gas and with a flow of 20 l/min as the feed gas passing through the Venturi pipe. The powder feeder developed in this paper is very easy to be handling and building, resulting in feeding rate of 0.25 cm3/min - 1.37 cm3/min. The TiO2 showed higher feeding rates than the Nb2O5 in all tests, and the best rates were obtained with tests using mass 1.5 g and time of 15 seconds, reaching feeding rate of 1.37 cm3/min. The flow of feed had low interference in feeding rate during the tests

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research for better performance materials in biomedical applications are constants. Thus recent studies aimed at the development of new techniques for modification of surfaces. The low pressure plasma has been highlighted for its versatility and for being environmentally friendly, achieving good results in the modification of physic chemical properties of materials. However, it is requires an expensive vacuum system and cannot able to generate superficial changes in specific regions. Furthermore, it is limits their use in polymeric materials and sensitive terms due to high process temperatures. Therefore, new techniques capable of generating cold plasma at atmospheric pressure (APPJ) were created. In order to perform surface treatments on biomaterials in specific regions was built a prototype capable of generating a cold plasma jet. The prototype plasma generator consists of a high voltage source, a support arm, sample port and a nozzle through which the ionized argon. The device was formed to a dielectric tube and two electrodes. This work was varied some parameters such as position between electrodes, voltage and electrical frequency to verify the behavior of glow discharges. The disc of titanium was polished and there was a surface modification. The power consumed, length, intensity and surface modifications of titanium were analyzed. The energy consumed during the discharges was observed by the Lissajous figure method. To check the length of the jets was realized with Image Pro Plus software. The modifications of the titanium surfaces were observed by optical microscopy (OM ) and atomic force microscopy (AFM ). The study showed that variations of the parameters such as voltage, frequency and geometric position between the electrodes influence the formation of the plasma jet. It was concluded that the plasma jet near room temperature and atmospheric pressure was able to cause modifications in titanium surface

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is part of an effort of consolidation of a daily search for powder technology at the Department of Physics of the Universidade Federal do Rio Grande do Norte. This work objective the study and development of new ceramic materials from raw materials abundant at the region. For this, were studied ceramic mixtures of powders from diatomite-titania to aiming at a new ceramic material from powder technology. The experimental work involved a characterization of ceramic powders from a diatomite-titania mixture. The powders obtained were pressed and then parameters like variation of mass, linear shrinkage, activation energy and the mechanism of sintering are studied in function of the time and temperature of sintering, beyond microstructural analysis. The obtained results allow us estimate the optimizing of sintering conditions of this material

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. Several applications of the study of EC can be emphasized the therapeutic techniques such as guided bone regeneration by implantation of EC in the affected site, without the need for bone grafts, using titanium as a vehicle. The process of cryopreservation is essential for the maintenance of cell cultures, since the cell line is frozen, it can be maintained in liquid nitrogen for an indefinite period and then thawed for therapeutic or experimental purposes. The aim of this study was to isolate a population of MSCs derived from the subendothelium of the umbilical vein human (MSCs-SUVH) to assess cytogenetic analysis by the possibility of appearance of chromosomal changes in two different situations: MSCs-SUVH regarding the process of cryopreservation and MSCs-SUVH grown on the surface of titanium. Flow cytometry analysis revealed that, this cell population was positive for the markers CD29, CD73 and CD90, but there was no expression of hematopoietic lineage markers, such as CD14, CD34 and CD45 and demonstrated capacity for osteogenic differentiation. The chromosomes obtained from the primary culture of MSCs-SUVH were analyzed by GTW banding technique, and results are described as guidelines to ISCN 2005. There was not the emergence of clonal chromosomal changes in the MSCs-SUVH in different situations analyzed. However one of the strings presented a balanced paracentric inversion, probably a cytogenetic constitutional alterations, which was present before and after the experimental situations that the MSCs-SUVH was submitted

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system