100 resultados para Tecnologia do vidro
Resumo:
In practically all vertical markets and in every region of the planet, loyalty marketers have adopted the tactic of recognition and reward to identify, maintain and increase the yield of their customers. Several strategies have been adopted by companies, and the most popular among them is the loyalty program, which displays a loyalty club to manage these rewards. But the problem with loyalty programs is that customer identification and transfer of loyalty points are made in a semiautomatic. Aiming at this, this paper presents a master's embedded business automation solution called e-Points. The goal of e-Points is munir clubs allegiances with fully automated tooling technology to identify customers directly at the point of sales, ensuring greater control over the loyalty of associate members. For this, we developed a hardware platform with embedded system and RFID technology to be used in PCs tenant, a smart card to accumulate points with every purchase and a web server, which will provide services of interest to retailers and customers membership to the club
Resumo:
Wireless sensor networks are reality nowadays. The growing necessity of connectivity between existing industrial plant equipments pushes the research and development of several technologies. The IEEE 802.15.4 LR-WPAN comes as a low-cost and powersaving viable solution, which are important concerns while making decisions on remote sensoring projects. This study intends to propose a wireless communication system which makes possible the monitoring of analogic and/or digital variables (i. e., the pressure studied) involved on the artificial methods for oil and gas lifting. The main issues are: To develop a software based on SMAC Standard in order to create a wireless network to monitoring analogic and/or digital variables; To evaluate the communication link based on the number of lost packets tested in different environments (indoor and outdoor) and To propose an instrumentation system consisting of wireless devices
Resumo:
A model of a solar oven with a reflective surface composed of two mirror segments is presented, constituting a two semi-parabolic surfaces made of fiberglass, applied on a ceramic mold, intended to be used in residential and commercial cooking. The reflective surface of the semi-parable is obtained with the use of multiple plain segments of 2 mm wide mirrors. The semi-parabolic structure has visible movements that are comparable to that of the sun. The technical details of the manufacturing and assembling processes will be presented with an analysis of the viability of thermal, economic, and materials of such prototype. This prototype has important social implications and primordial aspects, which combats the ecological damages caused by the wide-scale use of firewood during cooking. It has been demonstrated that the solar oven has the capacity to cook simultaneous two meals distinct for a family of four
Resumo:
An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials
Resumo:
An cylinder-parabolic solar concentrator is presented to produce steam for different applications. This prototype was built in glass fiber with dimensions that follow a study of optimization of parameters inherent in the optical reflection of sunlight by the surface of reflection and absorption of the same by tubing that leads the fluid of work. The surface of the concentrator of 2.24 m² has been covered by layers of mirror with 1.0 m of lenght and 2.0 cm wide. The absorb tubing consists of a copper tube diameter equal to 28 mm. The concentrator is moving to follow the apparent motion of the sun. It will be presented the processes of manufacturing and assembly of the concentrator proposed, which has as main characteristics the facilities construction and assembly, in addition to reduced cost. Will be presented data from tests performed to produce steam setting up some parameters that diagnose the efficiency of the concentrator. It will be demonstrated the viabilities thermal, economic and of materials of the proposed system.The maximum temperature achieved in the vacuum tube absorber was 232.1°C and average temperature for 1 hour interval was 171.5°C, obtained in a test with automation. The maximum temperature achieved in the output of water was 197.7°C for a temperature of 200.0°C in the absorber tube. The best average result of the water exit temperature to interval of 1 hour was 170.2°C for a temperature of 171.2°C, in the absorber tube, obtained in test with automation. Water exit mean temperatures were always above of the water steaming temperature. The concentrator present a useful efficiency of 38% and a production cost of approximately R$ 450,00 ( $ 160.34)
Resumo:
A solar alternative system for water heating is presented. It work on a thermosiphon, consisting of one or two alternative collectors and a water storage tank also alternative, whose main purpose is to socialize the use of energy mainly to be used by people of low income. The collectors were built from the use of pets bottles, cans of beer and soft drinks and tubes of PVC, ½ " and the thermal reservoirs from a drum of polyethylene used for storage of water and garbage placed inside cylinder of fiber glass and EPS ground between the two surfaces. Such collectors are formed by three elements: pet bottles, cans and tubes absorbers. The heating units, which form the collector contains inside the cans that can be closed, in original form or in the form of plate. The collectors have an absorber grid formed by eight absorbers PVC tube, connected through connections at T of the same material and diameter. It will be presented data of the thermal parameters which demonstrate the efficiency of the heating system proposed. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be demonstrated that this alternative heating system, which has as its main feature low cost, presents thermal, economic and materials viabilities
Resumo:
The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed
Resumo:
The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed
Resumo:
Structures capable of absorbing large amounts of energy are of great interest, particularly for the automotive and aviation industries, to reduce tbe impact on passengers in the case of a collision. The energy absorption properties of composite materials structures can be tailored, thus making these structures an appealing option a substitute of more traditional structures in applications where energy absorption is crucial. ln this research, the influence of some parameters, which affect the energy absorption capacity of composite material tubes, was investigated. The tubes were fabricated by hand lay-up, using orthophthalic polyester resin and a plain weave E-glass fabric Test specimens were prepared and tested under compression load. The ínfluence of the following parameters on the specific energy absorption capacity of the tubes was studied: fiber configuration (0/90º or ± 45°), tube cross-section (circular or square), and processing conditions (with or without vacuum). The results indicated that circular cross-section tubes with fibers oriented at 0/90º presented the highest level of specific energy absorbed. Further, specimens from tubes fabricated under vacuum displayed higher energy absorption capacity, when compared with specimens from tubes fabricated without vacuum. Thus, it can be concluded that the fabrication process with vacuum produce composite structures with better energy absorption capacity
Resumo:
In the last decades there was a significant increasing of the numbers of researchers that joint efforts to find alternatives to improve the development of low environmental impact technology. Materials based on renewable resources have enormous potentials of applications and are seen as alternatives for the sustainable development. Within other parameters, the sustainability depends on the energetic efficiency, which depends on the thermal insulation. Alternative materials, including vegetal fibers, can be applied to thermal insulation, where its first goal is to minimize the loss of energy. In the present research, it was experimentally analyzed the thermal behavior of fiber blankets of sisal (Agave sisalana) with and without surface treatment with oxide hidroxide (NaOH). Blankets with two densities (1100/1200 and 1300/1400 g/m2) were submitted to three rates of heat transfer (22.5 W, 40 W and 62.5 W). The analysis of the results allowed comparing the blankets treated and untreated in each situation. Others experiments were carried out to obtain the thermal conductivity (k), heat capacity (C) and the thermal diffusivity (α) of the blankets. Thermo gravimetric analyses were made to the verification of the thermal stability. Based on the results it was possible to relate qualitatively the effect of the heat transfer through the sisal blankets subjected to three heat transfer rates, corresponding to three temperature values (77 °C, 112 °C e 155 °C). To the first and second values of temperature it was verified a considerable reduction on the rate of heat transfer; nevertheless, to the third value of temperature, the surface of the blankets (treated and untreated) in contact with the heated surface of the tube were carbonized. It was also verified, through the analyses of the results of the measurements of k, C e α, that the blankets treated and untreated have values near to the conventional isolating materials, as glass wool and rock wool. It could be concluded that is technically possible the use of sisal blankets as constitutive material of thermal isolation systems in applications where the temperature do not reach values greater than 112 ºC
Resumo:
They are in this study the experimental results of the analysis of thermal performance of composite material made from a plant matrix of polyurethane derived from castor oil of kernel of mamona (COF) and loading of clay-mineral called vermiculite expanded. Bodies of evidence in the proportions in weight of 10%, 15% and 20% were made to determine the thermal properties: conductivity (k), diffusivity (ά) and heat capacity (C), for purposes of comparison, the measurements were also performed the properties of polyurethane of castor without charge and also the oil polyurethane (PU), both already used in thermal insulation. Plates of 0.25 meters of material analyzed were manufactured for use as insulation material in a chamber performance thermal coverage. Thermocouples were distributed on the surface of the cover, and inside the material inside the test chamber and this in turn was subjected to artificial heating, consisting of a bank of incandescent lamps of 3000 w. The results obtained with the composite materials were compared with data from similar tests conducted with the camera alone with: (a) of oil PU, (b) of COF (c) glass wool, (d ) of rock wool. The heat resistance tests were performed with these composites, obtaining temperature limits for use in the range of 100 º C to 130 º C. Based on the analysis of the results of performance and thermal properties, it was possible to conclude that the COF composites with load of expanded vermiculite present behavior very close to those exhibited by commercial insulation material
Resumo:
An alternative box-type solar oven constructed from the scrap iron of a gas conventional cook is presented, which functions principles are the effect greenhouse and the concentration. The oven of the conventional cook is the baking enclosure where the absorber (pot) of the solar oven is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven for the concentration of the radiation and a reflecting parabola was introduced in the baking enclosure for the exploitation of the incident reflected radiation in the interior of the oven. The oven is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove in study will be demonstrate The average internal temperature of the absorber was around 150°C and the internal temperature around 120°C. Will demonstrate that its low cost and good thermal performance represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
The process of recycling has been stimulated by the markets for several reasons, mainly on economical and environmental. Several products have been developed from recycled materials that already exist as well as several residues have been studied in different forms of applications. The greater majority of the applications for thermal insulation in the domestic, commercial and industrial systems have been elaborated in the temperature ranges between low to medium reaching up to 180oC. Many materials such as glass wool, rock wool, polystyrene are being used which are aggressive to the environment. Such materials in spite of the effectiveness in the retention of heat flow, they cost more and when discarded take several years to be absorbed by the nature. This way, in order to adapt to a world politics concerning the preservation of the environment, the present study was intended to develop a material composed of natural/biodegradable materials and industrial residues. The development of such a product in the form of a composite material based on tyre scrapes and latex for thermal insulation is presented in this research work. Thermal and physical properties of the tire scrapes as well as latex were studied in order to use them as raw materials for the manufacture of the intended composite to be applied as a thermal insulator in hot and cold systems varying between 0ºC and 200oC, respectively. Composite blankets were manufactured manually, in weight proportions of 1:1 (50:50%); 1:2 (33:67%) and 2:1 (67:33%) (tire scrapes: latex) respectively. Physical, mechanical and thermal properties of the composites were analyzed to obtain data about the viability of using the composite as a thermal insulator. The analyses carried out were based on standards ABNT, ASTM and UL. The maximum temperature obtained for the composite as a thermal insulator was 200ºC, which meets the range of applications that could be used as a thermal insulator in domestic as well as industrial purposes. The experimental results prove that the composite can be used as a thermal insulator on heated or cooled surface
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties