90 resultados para Sistemas de Tempo Real
Resumo:
Este trabalho apresenta o desenvolvimento de um método de coordenação e cooperação para uma frota de mini-robôs móveis. O escopo do desenvolvimento é o futebol de robôs. Trata-se de uma plataforma bem estruturada, dinâmica e desenvolvida no mundo inteiro. O futebol de robôs envolve diversos campos do conhecimento incluindo: visão computacional, teoria de controle, desenvolvimento de circuitos microcontrolados, planejamento cooperativo, entre outros. A título de organização os sistema foi dividido em cinco módulos: robô, visão, localização, planejamento e controle. O foco do trabalho se limita ao módulo de planejamento. Para auxiliar seu desenvolvimento um simulador do sistema foi implementado. O simulador funciona em tempo real e substitui os robôs reais. Dessa forma os outros módulos permanecem praticamente inalterados durante uma simulação ou execução com robôs reais. Para organizar o comportamento dos robôs e produzir a cooperação entre eles foi adotada uma arquitetura hierarquizada: no mais alto nível está a escolha do estilo de jogo do time; logo abaixo decide-se o papel que cada jogador deve assumir; associado ao papel temos uma ação específica e finalmente calcula-se a referência de movimento do robô. O papel de um robô dita o comportamento do robô na dada ocasião. Os papéis são alocados dinamicamente durante o jogo de forma que um mesmo robô pode assumir diferentes papéis no decorrer da partida
Resumo:
The Ethernet technology dominates the market of computer local networks. However, it was not been established as technology for industrial automation set, where the requirements demand determinism and real-time performance. Many solutions have been proposed to solve the problem of non-determinism, which are based mainly on TDMA (Time Division Multiple Access), Token Passing and Master-Slave. This work of research carries through measured of performance that allows to compare the behavior of the Ethernet nets when submitted with the transmissions of data on protocols UDP and RAW Ethernet, as well as, on three different types of Ethernet technologies. The objective is to identify to the alternative amongst the protocols and analyzed Ethernet technologies that offer to a more satisfactory support the nets of the industrial automation and distributed real-time application
Resumo:
Operating industrial processes is becoming more complex each day, and one of the factors that contribute to this growth in complexity is the integration of new technologies and smart solutions employed in the industry, such as the decision support systems. In this regard, this dissertation aims to develop a decision support system based on an computational tool called expert system. The main goal is to turn operation more reliable and secure while maximizing the amount of relevant information to each situation by using an expert system based on rules designed for a particular area of expertise. For the modeling of such rules has been proposed a high-level environment, which allows the creation and manipulation of rules in an easier way through visual programming. Despite its wide range of possible applications, this dissertation focuses only in the context of real-time filtering of alarms during the operation, properly validated in a case study based on a real scenario occurred in an industrial plant of an oil and gas refinery
Resumo:
A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms
Resumo:
Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second
Resumo:
The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works
Resumo:
The main specie of marine shrimp raised at Brazil and in the world is Litopenaeus vannamei, which had arrived in Brazil in the `80s. However, the entry of infectious myonecrosis virus (IMNV), causing the infectious myonecrosis disease in marine shrimps, brought economic losses to the national shrimp farming, with up to 70% of mortality in the shrimp production. In this way, the objective was to evaluate the survival of shrimps Litopenaeus vannamei infected with IMNV using the non parametric estimator of Kaplan-Meier and a model of frailty for grouped data. It were conducted three tests of viral challenges lasting 20 days each, at different periods of the year, keeping the parameters of pH, temperature, oxygen and ammonia monitored daily. It was evaluated 60 full-sib families of L. vannamei infected by IMNV in each viral challenge. The confirmation of the infection by IMNV was performed using the technique of PCR in real time through Sybr Green dye. Using the Kaplan-Meier estimator it was possible to detect significant differences (p <0.0001) between the survival curves of families and tanks and also in the joint analysis between viral challenges. It were estimated in each challenge, genetic parameters such as genetic value of family, it`s respective rate risk (frailty), and heritability in the logarithmic scale through the frailty model for grouped data. The heritability estimates were respectively 0.59; 0.36; and 0.59 in the viral challenges 1; 2; and 3, and it was also possible to identify families that have lower and higher rates of risk for the disease. These results can be used for selecting families more resistant to the IMNV infection and to include characteristic of disease resistance in L. vannamei into the genetic improvement programs
Resumo:
The Reconfigurable Computing is an intermediate solution at the resolution of complex problems, making possible to combine the speed of the hardware with the flexibility of the software. An reconfigurable architecture possess some goals, among these the increase of performance. The use of reconfigurable architectures to increase the performance of systems is a well known technology, specially because of the possibility of implementing certain slow algorithms in the current processors directly in hardware. Amongst the various segments that use reconfigurable architectures the reconfigurable processors deserve a special mention. These processors combine the functions of a microprocessor with a reconfigurable logic and can be adapted after the development process. Reconfigurable Instruction Set Processors (RISP) are a subgroup of the reconfigurable processors, that have as goal the reconfiguration of the instruction set of the processor, involving issues such formats, operands and operations of the instructions. This work possess as main objective the development of a RISP processor, combining the techniques of configuration of the set of executed instructions of the processor during the development, and reconfiguration of itself in execution time. The project and implementation in VHDL of this RISP processor has as intention to prove the applicability and the efficiency of two concepts: to use more than one set of fixed instructions, with only one set active in a given time, and the possibility to create and combine new instructions, in a way that the processor pass to recognize and use them in real time as if these existed in the fixed set of instruction. The creation and combination of instructions is made through a reconfiguration unit, incorporated to the processor. This unit allows the user to send custom instructions to the processor, so that later he can use them as if they were fixed instructions of the processor. In this work can also be found simulations of applications involving fixed and custom instructions and results of the comparisons between these applications in relation to the consumption of power and the time of execution, which confirm the attainment of the goals for which the processor was developed
Resumo:
This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
The great amount of data generated as the result of the automation and process supervision in industry implies in two problems: a big demand of storage in discs and the difficulty in streaming this data through a telecommunications link. The lossy data compression algorithms were born in the 90’s with the goal of solving these problems and, by consequence, industries started to use those algorithms in industrial supervision systems to compress data in real time. These algorithms were projected to eliminate redundant and undesired information in a efficient and simple way. However, those algorithms parameters must be set for each process variable, becoming impracticable to configure this parameters for each variable in case of systems that monitor thousands of them. In that context, this paper propose the algorithm Adaptive Swinging Door Trending that consists in a adaptation of the Swinging Door Trending, as this main parameters are adjusted dynamically by the analysis of the signal tendencies in real time. It’s also proposed a comparative analysis of performance in lossy data compression algorithms applied on time series process variables and dynamometer cards. The algorithms used to compare were the piecewise linear and the transforms.
Resumo:
The real-time embedded systems design requires precise control of the passage of time in the computation performed by the modules and communication between them. Generally, these systems consist of several modules, each designed for a specific task and restricted communication with other modules in order to obtain the required timing. This strategy, called federated architecture, is already becoming unviable in front of the current demands of cost, required performance and quality of embedded system. To address this problem, it has been proposed the use of integrated architectures that consist of one or few circuits performing multiple tasks in parallel in a more efficient manner and with reduced costs. However, one has to ensure that the integrated architecture has temporal composability, ie the ability to design each task temporally isolated from the others in order to maintain the individual characteristics of each task. The Precision Timed Machines are an integrated architecture approach that makes use of multithreaded processors to ensure temporal composability. Thus, this work presents the implementation of a Precision Machine Timed named Hivek-RT. This processor which is a VLIW supporting Simultaneous Multithreading is capable of efficiently execute real-time tasks when compared to a traditional processor. In addition to the efficient implementation, the proposed architecture facilitates the implementation real-time tasks from a programming point of view.
Resumo:
Flowering is a fundamental process in the life cycle for plant. This process is marked by vegetative to reproductive apical meristem conversion, due to interactions between several factors, both internal and external to plant. Therefore, eight subtractive libraries were constructed using apical meristem induced or not induced for two contrasting species: Solanum lycopersicum cv. Micro-Tom and Solanum pimpinellifolium. Several cDNAs were identified and among these, were selected two cDNAs: one homologous cDNA to cyclophilin (LeCYP1) and the other to Auxin repressed protein (ARP). It has observed that LeCYP1 and ARP genes are important in the developmental process to plants. In silico analysis, were used several databases with the exclusion criterion E-value <1.0x10-15. As a result, conservation was observed for proteins analyzed by means of multiple alignments and the presence of functional domains. Then, overexpression cassettes were constructed for the ARP cDNA in sense and antisense orientations. For this step, it was used the CaMV35S promoter. The cDNA orientation (sense or antisense) in relation to the promoter was determined by restriction enzymes and sequencing. Then, this cassette was transferred to binary vector pZP211 and these cassettes were transferred into Agrobacterium tumefaciens LBA4404. S. lycopersicum cv. Micro-Tom (MT) and MT-Rg1 plants were transformed. In addition, seedlings were subjected to hormone treatments using a synthetic auxin (- naphthalene acetic acid) and cyclosporin A (cyclophilin inhibitor) treatments and it was found that the hormone treatment there were changes in development of lateral roots pattern, probably related to decreases in auxin signaling caused by reduction of LeCYP1 in MT-dgt plants while cyclosporin A treatments, there was a slight delay in flowering in cv. MT plants. Furthermore, assay with real-time PCR (RT-qPCR) were done for expression level analysis from LeCYP1 and ARP in order to functionally characterize these sequences in tomato plants.
Resumo:
The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time
Resumo:
BRITTO, Ricardo S.; MEDEIROS, Adelardo A. D.; ALSINA, Pablo J. Uma arquitetura distribuída de hardware e software para controle de um robô móvel autônomo. In: SIMPÓSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE,8., 2007, Florianópolis. Anais... Florianópolis: SBAI, 2007.