54 resultados para Scheduler simulator
Resumo:
Nowadays there has been a major breakthrough in the aerospace area, with regard to rocket launches to research, experiments, telemetry system, remote sensing, radar system (tracking and monitoring), satellite communications system and insertion of satellites in orbit. This work aims at the application of a circular cylindrical microstrip antenna, ring type, and other cylindrical rectangular in structure of a rocket or missile to obtain telemetry data, operating in the range of 2 to 4 GHz, in S-band. Throughout this was developed just the theoretical analysis of the Transverse transmission line method which is a method of rigorous analysis in spectral domain, for use in rockets and missiles. This analyzes the spread in the direction "ρ" , transverse to dielectric interfaces "z" and "φ", for cylindrical coordinates, thus taking the general equations of electromagnetic fields in function of e [1]. It is worth mentioning that in order to obtain results, simulations and analysis of the structure under study was used HFSS program (High Frequency Structural Simulator) that uses the finite element method. With the theory developed computational resources were used to obtain the numerical calculations, using Fortran Power Station, Scilab and Wolfram Mathematica ®. The prototype was built using, as a substrate, the ULTRALAM ® 3850, of Rogers Corporation, and an aluminum plate as a cylindrical structure used to support. The agreement between the measured and simulated results validate the established processes. Conclusions and suggestions are presented for continuing this work
Resumo:
We propose in this work a software architecture for robotic boats intended to act in diverse aquatic environments, fully autonomously, performing telemetry to a base station and getting this mission to be accomplished. This proposal aims to apply within the project N-Boat Lab NatalNet DCA, which aims to empower a sailboat navigating autonomously. The constituent components of this architecture are the memory modules, strategy, communication, sensing, actuation, energy, security and surveillance, making these systems the boat and base station. To validate the simulator was developed in C language and implemented using the graphics API OpenGL resources, whose main results were obtained in the implementation of memory, performance and strategy modules, more specifically data sharing, control of sails and rudder and planning short routes based on an algorithm for navigation, respectively. The experimental results, shown in this study indicate the feasibility of the actual use of the software architecture developed and their application in the area of autonomous mobile robotics
Resumo:
Thermal methods made heavy oil production possible in fields where primary recovery failed. Throughout the years steam injection became one of the most important alternatives to increase heavy oil recovery. There are many types of steam injection, and one of them is the cyclic steam injection, which has been used with success in several countries, including Brazil. The process involves three phases: firstly, steam is injected, inside of the producing well; secondly, the well is closed (soak period); and finally, the well is put back into production. These steps constitute one cycle. The cycle is repeated several times until economical production limit is reached. Usually, independent of reservoir type, as the number of cycles increases the cyclic injection turns less efficient. This work aims to analyze rock and reservoir property influence in the cyclic steam injection. The objective was to study the ideal number of cycles and, consequently, process optimization. Simulations were realized using the STARS simulator from the CMG group based in a proposed reservoir model. It was observed that the reservoir thickness was the most important parameter in the process performance, whilst soaking time influence was not significant
Resumo:
This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment
Resumo:
The flow assurance has become one of the topics of greatest interest in the oil industry, mainly due to production and transportation of oil in regions with extreme temperature and pressure. In these operations the wax deposition is a commonly problem in flow of paraffinic oils, causing the rising costs of the process, due to increased energy cost of pumping, decreased production, increased pressure on the line and risk of blockage of the pipeline. In order to describe the behavior of the wax deposition phenomena in turbulent flow of paraffinic oils, under different operations conditions, in this work we developed a simulator with easy interface. For that we divided de work in four steps: (i) properties estimation (physical, thermals, of transport and thermodynamics) of n-alkanes and paraffinic mixtures by using correlations; (ii) obtainment of the solubility curve and determination the wax appearance temperature, by calculating the solid-liquid equilibrium of parafinnic systems; (iii) modelling wax deposition process, comprising momentum, mass and heat transfer; (iv) development of graphic interface in MATLAB® environment for to allow the understanding of simulation in different flow conditions as well as understand the matter of the variables (inlet temperature, external temperature, wax appearance temperature, oil composition, and time) on the behavior of the deposition process. The results showed that the simulator developed, called DepoSim, is able to calculate the profile of temperature, thickness of the deposit, and the amount of wax deposited in a simple and fast way, and also with consistent results and applicable to the operation
Resumo:
The aim of this study is to characterize and evaluate the Macro System of Regional Water Distribution Natal North (RNN) and Southern Regional Natal (RNS), covering 35% and 65% respectively of the Natal-RN City. The terms of the quality and quantity of water (surface and groundwater) were also evaluated in order to adjust the parameters that contribute to proper distribution and control in water reserves. The methodology of the work took place from collecting volumetric data of production capacity and distribution of the two treatment plants for Regional as well as the flow rates of wells. Yet the quantitative capacity of reservation, distribution and consumption of the main reservoirs, population numbers and consumption of members neighborhoods were collected. Data were tabulated and used in computational simulator EPANET to diagnose possible through the water balance, the offers and demands on the water supply system in the neighborhoods of the capital, linking them to specific distribution points. We also evaluated the wells in the levels of nitrate in water consumed. As a result it was found that some neighborhoods in the South Regional Natal, was ranked as critical supply situation: City of Hope, Lagoa Nova and Nova Descoberta, where demand exceeds supply. While in most Northern Regional Natal present deficiency in the supply system as: Lagoa Azul, the Parque dos Coqueiros, igapó, Amarante and Salinas. The rates of nitrate in the city were significant, but manageable with corrective and preventive measures. The averages were 12 mg /l-N in Candelária, 10 mg/l-N in Lagoa Nova, 9 mg/l-N in Satelite, 20 mg/l-N in Gramore and 15 mg/l-N in N. Sra. Apresentação. Therefore proper distribution of water abstracted and implementation of quality control ensures the supply required by the system, associated with preservation of Water Resources of the Metropolitan Region of Natal
Resumo:
It bet on the next generation of computers as architecture with multiple processors and/or multicore processors. In this sense there are challenges related to features interconnection, operating frequency, the area on chip, power dissipation, performance and programmability. The mechanism of interconnection and communication it was considered ideal for this type of architecture are the networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip communication is accomplished by transmitting packets that carry data and instructions that represent requests and responses between the processing elements interconnected by the network. The transmission of packets is accomplished as in a pipeline between the routers in the network, from source to destination of the communication, even allowing simultaneous communications between pairs of different sources and destinations. From this fact, it is proposed to transform the entire infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and storage, in a parallel processing system for high performance. In this proposal, the packages are formed by instructions and data that represent the applications, which are executed on routers as well as they are transmitted, using the pipeline and parallel communication transmissions. In contrast, traditional processors are not used, but only single cores that control the access to memory. An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an own programming model and a routing algorithm that guarantees the execution of all instructions in the packets, preventing situations of deadlock, livelock and starvation. This architecture provides mechanisms for input and output, interruption and operating system support. As proof of concept was developed a programming environment and a simulator for this architecture in SystemC, which allows configuration of various parameters and to obtain several results to evaluate it
Resumo:
Alongside the advances of technologies, embedded systems are increasingly present in our everyday. Due to increasing demand for functionalities, many tasks are split among processors, requiring more efficient communication architectures, such as networks on chip (NoC). The NoCs are structures that have routers with channel point-to-point interconnect the cores of system on chip (SoC), providing communication. There are several networks on chip in the literature, each with its specific characteristics. Among these, for this work was chosen the Integrated Processing System NoC (IPNoSyS) as a network on chip with different characteristics compared to general NoCs, because their routing components also accumulate processing function, ie, units have functional able to execute instructions. With this new model, packets are processed and routed by the router architecture. This work aims at improving the performance of applications that have repetition, since these applications spend more time in their execution, which occurs through repeated execution of his instructions. Thus, this work proposes to optimize the runtime of these structures by employing a technique of instruction-level parallelism, in order to optimize the resources offered by the architecture. The applications are tested on a dedicated simulator and the results compared with the original version of the architecture, which in turn, implements only packet level parallelism
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances