292 resultados para Retificadores de corrente eletrica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The career of civil engineer Henrique de Novaes, a remarkable figure in the academic, technical and political fields, demonstrates its extensive and relevant work across Brazil in the first half of the twentieth century. It covered from the design of water supply and sewage works, road and rail transport networks, works against drought in the Northeast, hydroelectric and harbor facilities to the urbanization planning and architectural projects, which displays a systematic and multiple production. City and territory conformed to his fields of verification, practical and above all, transformation. The search for understanding of the inclusion of a social actor in this process thus contributes to the specific analysis of the doings of Henrique de Novaes, who graduated at Polytechnic School of Rio de Janeiro in 1906. From a polymorphic activity in different scales, one tries to figure how, through academic education or professional practice, urban history in Brazil can be told or built. The introduction of technological innovations matched the purposes of planning and urban sprawl, as well as met the specifications of regulation and institutionalization of public infrastructure services at the time. The overall plans proposed by the engineer thought of the city as a whole, interconnected to the structural networks. At the same time, the knowledge of a larger physical scale the territory bounces back in the urban in a relationship of reciprocity and completeness. The objective research, therefore, tries to understand the roles played by Henrique de Novaes s works and academic education in the accomplishment of systematic modernization of Brazilian urban space and territory, recovering a little known historical figure by current historiography. It is proposed, as methodological axis, that the study of this professional career configures itself as an essential element for understanding the idea of progress embodied in the technical studies and proposals for improvements and sanitation nationwide in the first half of the twentieth century . The primary sources for the construction of this analysis were technical articles in journals of the period ( Clube de Engenharia , Viação e Revista Brasileira de Engenharia ), and technical reports, government messages, newspaper articles published at the time, autobiographical reports and the engineer s verbal communications with relatives. The work is structured in three chapters: "Biographical traces, academic education and 'technical and political' activities" illustrates the initiation into the technical, public and political environment; Chapter 2, "Technique and territory" outlines his network understanding through sanitation and transport services; Chapter 3 "Technique and City" describes the influence of polytechnics knowledge on the propositions of modernization of cities; Finally, "Final Thoughts: An Evaluation," presents an overview of the affiliations and practice of an engineer in the different scales, and its contribution to the modernization of Brazilian urban and territorial space

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The starting point of the present work consisted of investigating the development of biotechnology in the Northeast region of Brazil from the perspective of a Regional Innovation System (RIS). The theoretical framework adopted relied on the approaches and concepts presented by the Neo-Schumpeterian perspective. This framework was chosen because, by means of the Innovation System concept, this literature allows us to analyze the relationships and configurations of actors, as well as the role of the state and of social, science and technology, and economic policies in the studied region. The analysis considered four selected dimensions: physical infrastructure, human capital, scientific production, and funding. These variables were chosen because they allow us to verify the possibilities and limitations of developing a biotechnology RIS in the Northeast of Brazil, and these elements would help in answering the question behind this dissertation. The location of the physical infrastructure was determined by means of bibliographic and documental research and interviews with heads of institutions that do biotechnology research. Regarding human capital, the analysis focused on resource training in biotechnology, highlighting graduate courses and research groups in the area. To measure knowledge production, we delimited scientific collaboration among researchers in the field of biotechnology as the focus of this category. For the funding dimension, information was gathered from reports available at the websites of national and state funding agencies. The data was analyzed through method triangulation, involving quantitative and qualitative research stages. To back the analyses, we revisited the integration policies in the area of Science, Technology and Innovation. Our analysis has shown that these policies play a crucial role in the development of biotechnology in the region being studied. The data revealed that the physical infrastructure is concentrated in only three states (Bahia, Ceará, and Pernambuco). In this regard, the Northeast Biotechnology Network (Renorbio) stands out as a strategic actor, enabling states with poor infrastructure to develop research through partnerships with institutions located in another state. We have also verified that the practices involving human resource training and knowledge production are factors that enable the emergence of a regional system for biotechnology in the studied region. As limitations, we have verified the low immersion level of regional actors, the heterogeneity of socioeconomic indicators, the lack of financial resources, and a low innovation culture in the business sector. Overall, we have concluded that the development of a Regional Innovation System in Biotechnology, based on the current regional dynamics, depends on an effective change in the behavior of the social agents involved, both in the national and regional dimensions as well as in the public and private spheres

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system built to characterize electrodes and, consequently, deposited fine films are constituted by a hollow cathode that works to discharges and low pressures (approximately 10-3 to 5 mbar), a source DC (0 to 1200 V), a cylindrical camera of closed borossilicato for flanges of stainless steel with an association of vacuum bombs mechanical and spread. In the upper flange it is connected the system of hollow cathode, which possesses an entrance of gas and two entrances for its refrigeration, the same is electrically isolated of the rest of the equipment and it is polarized negatively. In front of the system of hollow cathode there is a movable sample in stainless steel with possibility of moving in the horizontal and vertical. In the vertical, the sample can vary its distance between 0 and 70 mm and, in the horizontal, can leave completely from the front of the hollow cathode. The sample and also the cathode hollow are equipped with cromel-alumel termopares with simultaneous reading of the temperatures during the time of treatment. In this work copper electrodes, bronze, titanium, iron, stainless steel, powder of titanium, powder of titanium and silício, glass and ceramic were used. The electrodes were investigated relating their geometry change and behavior of the plasma of the cavity of hollow cathode and channel of the gas. As the cavity of hollow cathode, the analyzed aspects were the diameter and depth. With the channel of the gas, we verified the diameter. In the two situations, we investigated parameters as flow of the gas, pressure, current and applied tension in the electrode, temperature, loss of mass of the electrode with relationship at the time of use. The flow of gas investigated in the electrodes it was fastened in a work strip from 15 to 6 sccm, the constant pressure of work was among 2.7 to 8 x 10-2 mbar. The applied current was among a strip of work from 0,8 to 0,4 A, and their respective tensions were in a strip from 400 to 220 V. Fixing the value of the current, it was possible to lift the curve of the behavior of the tension with the time of use. That curves esteem in that time of use of the electrode to its efficiency is maximum. The temperatures of the electrodes were in the dependence of that curves showing a maximum temperature when the tension was maximum, yet the measured temperatures in the samples showed to be sensitive the variation of the temperature in the electrodes. An accompaniment of the loss of mass of the electrode relating to its time of use showed that the electrodes that appeared the spherical cavities lost more mass in comparison with the electrodes in that didn't appear. That phenomenon is only seen for pressures of 10-2 mbar, in these conditions a plasma column is formed inside of the channel of the gas and in certain points it is concentrated in form of spheres. Those spherical cavities develop inside of the channel of the gas spreading during the whole extension of the channel of the gas. The used electrodes were cut after they could not be more used, however among those electrodes, films that were deposited in alternate times and the electrodes that were used to deposit films in same times, those films were deposited in the glass substrata, alumina, stainless steel 420, stainless steel 316, silício and steel M2. As the eletros used to deposit films in alternate time as the ones that they were used to deposit in same times, the behavior of the thickness of the film obeyed the curve of the tension with relationship the time of use of the electrode, that is, when the tension was maximum, the thickness of the film was also maximum and when the tension was minimum, the thickness was minimum and in the case where the value of the tension was constant, the thickness of the film tends to be constant. The fine films that were produced they had applications with nano stick, bio-compatibility, cellular growth, inhibition of bacterias, cut tool, metallic leagues, brasagem, pineapple fiber and ornamental. In those films it was investigated the thickness, the adherence and the uniformity characterized by sweeping electronic microscopy. Another technique developed to assist the production and characterization of the films produced in that work was the caloteste. It uses a sphere and abrasive to mark the sample with a cap impression, with that cap form it is possible to calculate the thickness of the film. Through the time of life of the cathode, it was possible to evaluate the rate of waste of its material for the different work conditions. Values of waste rate up to 3,2 x 10-6 g/s were verified. For a distance of the substratum of 11 mm, the deposited film was limited to a circular area of 22 mm diameter mm for high pressures and a circular area of 75 mm for pressure strip. The obtained films presented thickness around 2,1 µm, showing that the discharge of arch of hollow cathode in argon obeys a curve characteristic of the tension with the time of life of the eletrodo. The deposition rate obtained in this system it is of approximately 0,18 µm/min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel is a fuel obtained from vegetable oils, such as soy, castorbean, among others. The monoester of fatty acid of these oils have chains with mono, di and tri double connections. The presence of these insaturations are susceptible to oxidization. Antioxidants are substances able to prevent oxidization from oils, fats, fat foods, as well as esters of Alquila( biodiesel). The objective of this work is to summarize a new antioxidant from the Cashew Nut Shell Liquid (CNSL) using the electrolysis technique. A current of 2 amperes was used in a single cell of only one group and two eletrodos of stainless steel 304 in a solution of methanol, together with the eletrolits: acetic acid, sodium chloride and sodium hydroxide, for two hours of agitation. The electrolysis products are characterized by the techniques of cromatography in a thin layer, spectroscopy of infrared and gravimetric analysis. The material was submitted to tests of oxidative stability made by the techniques of spectropy of impendancy and Rancimat (EN 14112). The analyses of characterization suggest that the polimerization of the electrolytic material ocurred. The application results of these materials as antioxidants of soy biodiesel showed that the order of the oxidative stability was obtained by both techniques used

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic ceramics have been widely investigated, especially with respect to intrinsic and extrinsic characteristics of these materials. Among the magnetic ceramic materials of technological interest, there are the ferrites. On the other hand, the thermal treatment of ceramic materials by microwave energy has offered various advantages such as: optimization of production processes, high heat control, low consumption of time and energy among others. In this work were synthesized powders of Ni-Zn ferrite with compositions Ni1- xZnxFe2O4 (0.25 ≤ x ≤ 0.75 mols) by the polymeric precursor route in two heat treatment conditions, conventional oven and microwave energy at 500, 650, 800 and 950°C and its structural, and morphological imaging. The materials were characterized by thermal analysis (TG/ DSC), X-ray diffraction (XRD), absorption spectroscopy in the infrared (FTIR), scanning electron microscopy (SEM), X-ray spectroscopy and energy dispersive (EDS) and vibrating sample magnetometry (VSM). The results of X-ray diffraction confirmed the formation of ferrite with spinel-type cubic structure. The extrinsic characteristics of the powders obtained by microwave calcination and influence significantly the magnetic behavior of ferrites, showing particles ferrimagnéticas characterized as soft magnetic materials (soft), is of great technological interest. The results obtained led the potential application of microwave energy for calcining powders of Ni-Zn ferrite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min. Other parameters, such as working gas composition and treatment time, were modified as the following: to the O2 plasma modified samples only the treatment time was changed (10, 20, 30, 40, 50 and 60 minutes). To the plasma with O2 and N2 only the chemical concentrations were changed. Through Capillary tests (vertical) an increase in textile wettability was observed as well as its influence on aging time and its consequence on wettability. The surface functional groups created after plasma treatments were investigated using X-ray Photoelectron Spectroscopy (XPS). The surface topography was examined by scanning electron microscope (SEM)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of active silica potentially improves the quality of concrete due to its high reactivity and pore refinement effect. The reactivity of silica is likely related to its charge density. Variations in surface charge alter the reactivity of the material consequently affecting the properties of concrete. The present study aimed at investigating variations in the charge density of silica as a function of acid treatments using nitric or phosphoric acid and different pH values (2.0, 4.0 and 6.0). Effects on concrete properties including slump, mechanical strength, permeability and chloride corrosion were evaluated. To that end, a statistical analysis was carried out and empirical models that correlate studied parameters (pH, acid and cement) with concrete properties were established. The quality of the models was tested by variance analysis. The results revealed that the addition of silica was efficiency in improving the properties of concrete, especially the electrochemical parameters. The addition of silica treated using nitric acid at pH = 4.0 displayed the best cement performance including highest strength, reduced permeability and lowest corrosion current

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main problem on the exploration activity on petroleum industry is the formation water resulted on the fields producing. The aggravating of this problem is correlated with the advancing technologies used on the petroleum extractions and on its secondary approach objecting the reobtainment of this oil. Among the main contaminants of the water formation are corrosives gases such as: O2, CO2 and H2S, some solids in suspension and dissolved salts. Concerning to those gases the CO2 is the one that produce significant damage for carbon steel on corrosion process of the petroleum and gas industries. Corrosion inhibitors for carbon steel in formation water is one of the most used agents in control of those damages. In this context, the poor investigations of carbon steel corrosion proceeding from solids in suspension is an opened field for studies. On this work the inhibitor effect of the commercial CORRTREAT 703 was evaluated on some specific solids in suspension at saline medium containing 10.000 ppm of de-aerated chloride using CO2 until non oxygen atmosphere been present. For that, quartz, calcium carbonate, magnetite and iron sulphide were subjected to this investigation as the selected solids. The effect of this inhibitor on corrosion process correlated with those specific solids, was measured using electrochemical (resistance of linear polarization and galvanic pair) and gravimetrical techniques. During all the experimental work important parameters were monitored such as: pH, dissolved oxygen, temperature, instantaneous corrosion rate and galvanic current. According to the obtained results it was proved that the suspension solids calcium carbonate and iron sulphide decrease the corrosion process in higher pH medium. Meanwhile the quartz and magnetite been hardness increase corrosion by broking of the passive layer for erosion. In the other hand, the tested inhibitor in concentration of 50 ppm, showed to be effective (91%) in this corrosion process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work was used a plasma torch of non transferred arc with argon as work gas, using a power supply with maximum DC current of 250 A and voltage of 30 V to activate the plasma and keep it switched on. The flame temperature was characterized by optical emission spectroscopy, through Boltzmann-plot-method. The torch has been used like igniter in the aluminothermic reduction of the mixture tantalum oxide and aluminum, seeking to obtain metallic tantalum. In heating of the reagents only one particle will be considered to study interactions between plasma-particle, seeking to determinate its fusion and residence time. The early powders were characterized by laser granulometry, scanning electron microscopy (SEM) and X-ray diffraction analysis. The final product of this reaction was characterized by SEM and X-ray diffraction. Crystallite size was calculated by the Scherrer equation and microdeformation was determined using Willamsom-Hall graph. With Rietveld method was possible to quantify the percentile in weight of the products obtained in the aluminothermic reaction. Semi-quantitative chemical analysis (EDS) confirmed the presence of metallic tantalum and Al2O3 as products of the reduction. As was waited the particle size of the metallic tantalum produced, presents values in nanometric scale due the short cooling time of those particles during the process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical resistive heating (ERH) is a thermal method used to improve oil recovery. It can increase oil rate and oil recovery due to temperature increase caused by electrical current passage through oil zone. ERH has some advantage compared with well-known thermal methods such as continuous steam flood, presenting low-water production. This method can be applied to reservoirs with different characteristics and initial reservoir conditions. Commercial software was used to test several cases using a semi-synthetic homogeneous reservoir with some characteristics as found in northeast Brazilian basins. It was realized a sensitivity analysis of some reservoir parameters, such as: oil zone, aquifer presence, gas cap presence and oil saturation on oil recovery and energy consumption. Then it was tested several cases studying the electrical variables considered more important in the process, such as: voltage, electrical configurations and electrodes positions. Energy optimization by electrodes voltage levels changes and electrical settings modify the intensity and the electrical current distribution in oil zone and, consequently, their influences in reservoir temperature reached at some regions. Results show which reservoir parameters were significant in order to improve oil recovery and energy requirement in for each reservoir. Most significant parameters on oil recovery and electrical energy delivered were oil thickness, presence of aquifer, presence of gas cap, voltage, electrical configuration and electrodes positions. Factors such as: connate water, water salinity and relative permeability to water at irreducible oil saturation had low influence on oil recovery but had some influence in energy requirements. It was possible to optimize energy consumption and oil recovery by electrical variables. Energy requirements can decrease by changing electrodes voltages during the process. This application can be extended to heavy oil reservoirs of high depth, such as offshore fields, where nowadays it is not applicable any conventional thermal process such as steam flooding