196 resultados para Resíduo cerâmico


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work it was developed originals alternatives of enveronmentally safe and economically viable destination of thermoset plastic residue from a button factory, which at presnte stores such residue tempor and in a way that is inconvenient to the atmosphere, a waiting safe solutions. As the residue is not recycleab and its burning leberates strongly aggressive gases, safe alternatives were researched. Inicially, ghe residue in incineration was performed in cement ovens with precise control ofe emission of gases, but it was proved inviable due to its low calorific power, as well as the liberation of free lead in the ashes. An original and feasible option was the residue confinemente in soil-ciment blocks, lohich resulted in blocks highly resistant to simple compression with structural block, and also a significant increase in thermal resistence. Was got up other options of original and important composites as: making of blocks for pré-moulded flagstone, internal coating of walls with plaster being obtained good texture results, replenish of ceramic blocks and blocks with cement, also implying in increase of thermal resistance. Besides these original and scientific contributions, the it was technologically contribution of defreadation with suggestions of the material using torch of thermal plasm; for this was projected, built, characterized and tested a torch to it shapes it being obtained exciting results for the development of this technology come back for ending destruction from all the types of inconvenient garbage to the atmosphere

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum evaluation is analyze it using different methodologies, following international standards to know their chemical and physicochemical properties, contaminant levels, composition and especially their ability to generate derivatives. Many of these analyzes consuming a lot of time, large amount of samples , supplies and need an organized transportation logistics, schedule and professionals involved. Looking for alternatives that optimize the evaluation and enable the use of new technologies, seven samples of different centrifuged Brazilian oils previously characterized by Petrobras were analyzed by thermogravimetry in 25-900° C range using heating rates of 05, 10 and 20ºC per minute. With experimental data obtained, characterizations correlations were performed and provided: generation of true boiling point curves (TBP) simulated; comparing fractions generated with appropriate cut standard in temperature ranges; an approach to obtain Watson characterization factor; and compare micro carbon residue formed. The results showed a good chance of reproducing simulated TBP curve from thermogravimetry taking into account the composition, density and other oil properties. Proposed correlations for experimental characterization factor and carbon residue followed Petrobras characterizations, showing that thermogravimetry can be used as a tool on oil evaluation, because your quick analysis, accuracy, and requires a minimum number of samples and consumables

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This works aims at investigating the effects of adding waste from RCBP-polyester button manufacturing to Portland cement concrete, particularly regarding its consistency and mechanic strength. The RCBP used came from a button factory located in Parnamirim, RN, Brazil. The waste was added to the concrete on different ratios: 5 %, 10 %, 15 % and 20 % of the total cement mass. A sample of concrete without the RCBP was used as reference, 1:1,33:2,45:0,50. For the mechanic strength test four samples were tested with different ages (3, 7 and 28 days old) and mixtures. Furthermore, a Slump Test was also conducted in order to verify the concrete s consistency. A tendency to a reduction in the compression resistance was noticed for all samples. For the samples with 5 % and 10 %, there was also an increase in the traction resistance during inflexion, regarding the reference concrete. In the microstructural analysis, the RBCP was observed to show an irregular and porous surface, thus explaining the consistency decrease

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the 70`s, with the publication of the Manifesto for Environment UN Conference, held in Stockholm, in Sweden (1972), defend and improve the environment became part of our daily lives. Thus, several studies have emerged in several segments in order to reuse the waste. Some examples of waste incorporated in portland cement concrete are: rice husk ash, bagasse ash of cane sugar, powder-stone, microsilica, tire rubber, among others. This research used the residue of the mining industry Scheelite, to evaluate the incorporation of the residue composition of Portland cement concrete, replacing the natural sand. The percentage of residue were incorporated from 0% to 100%, with a variation of 10%, 11 being produced concrete mix in the ratio 1:2:3:0.60, by mass. We evaluated the following characteristics of concrete: slump test, compressive strength, tensile strength by diametral compression, water absorption, porosity and density, based on the ABNT, through tests performed in the Laboratory of Civil Construction, UFRN. The trace with the addition of 60% scheelite residue was obtained which better performance. Therefore, the use of the waste from the production of Scheelite is feasible due to the durability parameters (water absorption and porosity), sustainability, and the good results of the resistance of the concrete

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this work was the development of ceramic dielectric substrates of bismuth niobate (BiNbO4) doped with vanadium pentoxide (V2O5), with high permittivity, used in the construction of microstrip patch antennas with applications in wireless communications systems. The high electrical permittivity of the ceramic substrate provided a reduction of the antenna dimensions. The numerical results obtained in the simulations and the measurements performed with the microstrip patch antennas showed good agreement. These antennas can be used in wireless communication systems in various frequency bands. Results were satisfactory for antennas operating at frequencies in the S band, in the range between 2.5 GHz and 3.0 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic substrates have been investigated by researchers around the world and has achieved a high interest in the scientific community, because they had high dielectric constants and excellent performance in the structures employed. Such ceramics result in miniaturized structures with dimensions well reduced and high radiation efficiency. In this work, we have used a new ceramic material called lead zinc titanate in the form of Zn0,8Pb0,2TiO3, capable of being used as a dielectric substrate in the construction of various structures of antennas. The method used in constructing the ceramic combustion synthesis was Self- Sustained High Temperature (SHS - "Self-Propagating High-Temperature Synthesis") which is defined as a process that uses highly exothermic reactions to produce various materials. Once initiated the reaction area in the reaction mixture, the heat generated is sufficient to become self-sustaining combustion in the form of a wave that propagates converting the reaction mixture into the product of interest. Were analyzed aspects of the formation of the composite Zn0,8Pb0,2TiO3 by SHS powders and characterized. The analysis consisted of determining the parameters of the reaction for the formation of the composite, as the ignition temperature and reaction mechanisms. The production of composite Zn0,8Pb0,2TiO3 by SHS performed in the laboratory, was the result of a total control of combustion temperature and after obtaining the powder began the development of ceramics. The product was obtained in the form of regular, alternating layers of porous ceramics and was obtained by uniaxial pressing. 10 The product was characterized by analysis of dilatometry, X-ray diffraction analysis and scanning electron microscopy. One of the contributions typically defined in this work is the development of a new dielectric material, nevertheless presented previously in the literature. Therefore, the structures of the antennas presented in this work consisted of new dielectric ceramics based Zn0,8Pb0,2TiO3 usually used as dielectric substrate. The materials produced were characterized in the microwave range. These are dielectrics with high relative permittivity and low loss tangent. The Ansoft HFSS, commercial program employee, using the finite element method, and was used for analysis of antennas studied in this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world market of Kaolin has been growing as new investments for better quality of materials have been applied. This market produces amounts of dross that are put in the environment in a wrong way, causing damages to it. Trying to reduce these damages, researches have been done in an attempt to use kaolin dross in ceramic. The disposal of kaolin dross in the environment by the industries of the states of Rio Grande do Norte and Paraiba have great impact in society. Usually this dross is disposed clandestinely in places like roads, river banks and lands of small cities. The present work shows the characteristics of the kaolin produced by the mining company in Junco do Seridó, Paraiba state, western Seridó, 300 km from Natal, in the border of both states. After that, researches were done to study its physical and the chemistry characteristics, trying to see if it can be used in white ceramic. The samples got were bolted in fabric of 325# . The technological characteristics tried to use it as a product in white ceramic. For that, it was made a haracterization of the subject matter through enlargement analyses, ATG and ATD, elaborating three formulations that were burned in four different temperatures, 1175, 1200, 1250 and 1300 degrees centigrade up to 30 minutes. After the burning, the subjects were submitted to water absorbing tests, linear retreating, apparent porosity, apparent specific mass, resistance to flexibility and MEV. For one of the mixtures it was obtained demanded properties for a semi porous material

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adhesive mortars are a mixture of cement, sand, and additives to polymers that retain the mixing water and promotes adherence, being used in setting on various ceramic substrates. The sand used in the production of these mortars is from the riverbeds, and with the increasing restriction of these sands extraction by environmental agencies, and often having to be transported over long distances to the consumer center. This work aims to design and physical and mechanical characterization of ecological adhesive mortar with total replacement of natural sand by sand from the crushing of limestone, and the addition of mineral ash biomass of cane sugar in partial replacement cement used in the production of adhesive mortar , aiming compositions that meet the regulatory specifications for use adhesive mortar. Standardized tests to determine the tensile bond strength (NBR 14081-4), determination of open time (NBR 14081-3) and determination of slip (NBR 14081-5) were performed. Were also conducted trials squeeze flow in different formulation, the mortar with addition of 15 % gray biomass of cane sugar for cement mortars as well as the total replacement of natural sand by sand limestone crushing, got the best performance among the mortars studied, it was found that the addition of biomass to replace cement is perfectly feasible due to its pozzolanic activity, which contributed to this reduction in the cement matrix formation of adhesive mortar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acerola (Malpighia emarginata D.C.) is a red fruit widely cultivated in Brazil, especially in the Northeastern region. Its increasing demand is attributed to its high ascorbic acid contents. Besides ascorbic acid, widely known by its health-benefit effects, acerola is rich in anthocyanins, which contribute for the antioxidant power of the fruit. Acerola processing produces a bright-red pomace, usually discarded. The further processing of this pomace, in order to explore its antioxidant compounds, could enhance acerola market value and rentability of its processing. Both ascorbic acid and anthocyanins are highly susceptible to degradation, that can be delayed by microencapsulation, which consists on packing particles (core) in an edible matrix (wall material). This work has been made with the purpose of producing a microencapsulated acerola pomace extract, which could be used by the food industry as a functional ingredient with antioxidant and coloring properties. Antioxidant compounds were recovered by pressing the pomace diluted in a solvent (a citric acid aqueous solution), by using a central composite design, with two variables: citric acid concentration in the solvent (0-2%), and solvent: pomace mass ratio (2:1-6:1). The acerola pomace extract was then microencapsulated by spray drying. A central composite design was adopted, with three variables: inlet temperature of the spray dryer (170o-200oC), wall material: acerola solids mass ratio (2:1-5:1), and degree of maltodextrin replacement by cashew tree gum as wall material (0-100%). The cashew tree gum was used because of its similarity to arabic gum, which is regarded as the wall material by excellence. The following conditions were considered as optimal for extraction of anthocyanins and ascorbic acid: solvent/pomace ratio, 5:1, and no citric acid in the solvent. 82.47% of the anthocyanins were recovered, as well as 83.22% of the ascorbic acid. Anthocyanin and ascorbic acid retentions were favored by lower inlet temperatures, higher wall material: acerola solids mass ratio and higher maltodextrin replacement by cashew tree gum, which was presented as a promising wall material. The more adequate microencapsulation conditions, based not only on retention of antioxidant compounds but also on physical properties of the final powder, were the following: inlet temperature, 185oC; wall material: acerola solids mass ratio, 5:1, and minimum degree of maltodextrin replacement by cashew tree gum, 50%