68 resultados para Problema de seleção de fornecedores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marmosets, Callithrix jacchus, are strictly diurnal animals. The motor activity rhythmicity is generated by the circadian timing system and is modulated by environmental factors, mainly by photic stimuli that compose the light-dark cycle. Photic stimuli can reset the biological oscilators changing activity motor pattern, by a mechanism called entrainment. Otherwise, light can act directly on expressed rhythm, without act on the biological oscillators, promoting the masking. Thus, photic stimuli can synchronize the circadian activity rhythm (CAR) by two distinct mechanisms, acting isolated or at a combined way. Among the elements that can influence photic synchronization, the duration and time of photic exposure is pointed out. If in the natural environment the marmoset can choose places of different intensity illumination and is synchronized to light-dark cycle (LD), how the photic synchronization mechanism can be evaluated in laboratory by light self-selection? With objective to response this question, four adult male marmosets were studied at two conditions: with and without sleeping box. The animals were submitted to a LD cycle (12:12/ 350:2 lx) and constant light (LL: 350 lx) conditions in individual cages with an opaque sleeping box, that permitted the light self-selection. At the room, the temperature was 25.6 ºC (± 0.3 ºC) and humidity was 78.7 (± 5%). The motor activity was recorded at 5 min bins by infrared movement sensors installed at the top of the cages. The motor activity profile was distinct at the two conditions: without the sleeping box protection against light, the activity frequency was higher at CT 11-12 (ANOVA; F(3.23) = 62.27; p < 0.01). Also, the duration of the active phase (α) was prolonged of about 1 h (t test, p < 0.05) and the animals showed a significant delay on the activity onset and offset (t test, p < 0.05) and at the acrophase (confidence intervals of 5%) of CAR. In LL, the light continuous exposure prolonged the active phase and influenced the endogenous expression of the circadian activity rhythm period. From the result analysis, it is concluded that the light self-selection can modify several parameters of CAR in marmosets, allowing the study of the synchronization mechanism using the burrow model. Thus, without sleeping box there was a phase delay between the CAR and LD (entrainment) and an increase of activity near lights off (positive masking). Furthermore, in LL, the light continuous exposure modifies α and the endogenous expression of CAR. It is suggested that the light self-selection might be take into account at investigations that evaluate the biological rhythmicity in marmosets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concern about a good physical condition is heavily present nowadays, in documentary films about health and in the media, and it is also expressed through the outstanding growth of physical academies, beauty institutes and aesthetic medicine and all kind of aesthetic surgeries. In the western world the body wave is a significant trend, characterized by the great investments in body image. However, what is overlooked is the fact that in parallel trend grows the number of teenagers, especially females, with all kind of problems related to their body image. As adolescence is a moment of transformations, teenagers tend to be more aware of their body image and often neglect food ingestion and try to build their bodies following the images they have from top models and movie stars. The low self-esteem accompanying this sort of experience is an additional problem. Therefore the research aim to analyze discourses regarding the body image produced in world wide web diaries (blogs). The blogs selection was made through the site www.blogs.com.br, which is considered the widest guide of electronic diaries in Brazil. We looked after blogs including the keyword body and from adolescents aged 10 to 19, who showed concern about a slim body. Three blogs were chosen, considering the example criteria. Discourse analysis shows that these teenagers feel unsatisfied with their bodies, searching by all means the thinness presented as a aesthetic paradigm in western societies which often implies neglecting their own health, using appetite inhibitor drugs, restricting or totally abstaining food ingestion for long periods of time, or provoking themselves vomits after ingesting food. These behaviors, together with intense fear of gaining weight, can be characterized as alimentary disorders, related to the body image. As they usually hide this sort of behaviors from family and friends who do not share this concern, the blogs seem to be an easy tool for adolescents to find peers with whom to share common values and ideas and reaffirm their identities and virtual sense of community

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIRS) as a rapid and non-destructive method to determine the soluble solid content (SSC), pH and titratable acidity of intact plums. Samples of plum with a total solids content ranging from 5.7 to 15%, pH from 2.72 to 3.84 and titratable acidity from 0.88 a 3.6% were collected from supermarkets in Natal-Brazil, and NIR spectra were acquired in the 714 2500 nm range. A comparison of several multivariate calibration techniques with respect to several pre-processing data and variable selection algorithms, such as interval Partial Least Squares (iPLS), genetic algorithm (GA), successive projections algorithm (SPA) and ordered predictors selection (OPS), was performed. Validation models for SSC, pH and titratable acidity had a coefficient of correlation (R) of 0.95 0.90 and 0.80, as well as a root mean square error of prediction (RMSEP) of 0.45ºBrix, 0.07 and 0.40%, respectively. From these results, it can be concluded that NIR spectroscopy can be used as a non-destructive alternative for measuring the SSC, pH and titratable acidity in plums

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Car Rental Salesman Problem (CaRS) is a variant of the classical Traveling Salesman Problem which was not described in the literature where a tour of visits can be decomposed into contiguous paths that may be performed in different rental cars. The aim is to determine the Hamiltonian cycle that results in a final minimum cost, considering the cost of the route added to the cost of an expected penalty paid for each exchange of vehicles on the route. This penalty is due to the return of the car dropped to the base. This paper introduces the general problem and illustrates some examples, also featuring some of its associated variants. An overview of the complexity of this combinatorial problem is also outlined, to justify their classification in the NPhard class. A database of instances for the problem is presented, describing the methodology of its constitution. The presented problem is also the subject of a study based on experimental algorithmic implementation of six metaheuristic solutions, representing adaptations of the best of state-of-the-art heuristic programming. New neighborhoods, construction procedures, search operators, evolutionary agents, cooperation by multi-pheromone are created for this problem. Furtermore, computational experiments and comparative performance tests are conducted on a sample of 60 instances of the created database, aiming to offer a algorithm with an efficient solution for this problem. These results will illustrate the best performance reached by the transgenetic algorithm in all instances of the dataset

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree Problem (QMST) is a version of the Minimum Spanning Tree Problem in which, besides the traditional linear costs, there is a quadratic structure of costs. This quadratic structure models interaction effects between pairs of edges. Linear and quadratic costs are added up to constitute the total cost of the spanning tree, which must be minimized. When these interactions are restricted to adjacent edges, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). AQMST and QMST are NP-hard problems that model several problems of transport and distribution networks design. In general, AQMST arises as a more suitable model for real problems. Although, in literature, linear and quadratic costs are added, in real applications, they may be conflicting. In this case, it may be interesting to consider these costs separately. In this sense, Multiobjective Optimization provides a more realistic model for QMST and AQMST. A review of the state-of-the-art, so far, was not able to find papers regarding these problems under a biobjective point of view. Thus, the objective of this Thesis is the development of exact and heuristic algorithms for the Biobjective Adjacent Only Quadratic Spanning Tree Problem (bi-AQST). In order to do so, as theoretical foundation, other NP-hard problems directly related to bi-AQST are discussed: the QMST and AQMST problems. Bracktracking and branch-and-bound exact algorithms are proposed to the target problem of this investigation. The heuristic algorithms developed are: Pareto Local Search, Tabu Search with ejection chain, Transgenetic Algorithm, NSGA-II and a hybridization of the two last-mentioned proposals called NSTA. The proposed algorithms are compared to each other through performance analysis regarding computational experiments with instances adapted from the QMST literature. With regard to exact algorithms, the analysis considers, in particular, the execution time. In case of the heuristic algorithms, besides execution time, the quality of the generated approximation sets is evaluated. Quality indicators are used to assess such information. Appropriate statistical tools are used to measure the performance of exact and heuristic algorithms. Considering the set of instances adopted as well as the criteria of execution time and quality of the generated approximation set, the experiments showed that the Tabu Search with ejection chain approach obtained the best results and the transgenetic algorithm ranked second. The PLS algorithm obtained good quality solutions, but at a very high computational time compared to the other (meta)heuristics, getting the third place. NSTA and NSGA-II algorithms got the last positions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process for choosing the best components to build systems has become increasingly complex. It becomes more critical if it was need to consider many combinations of components in the context of an architectural configuration. These circumstances occur, mainly, when we have to deal with systems involving critical requirements, such as the timing constraints in distributed multimedia systems, the network bandwidth in mobile applications or even the reliability in real-time systems. This work proposes a process of dynamic selection of architectural configurations based on non-functional requirements criteria of the system, which can be used during a dynamic adaptation. This proposal uses the MAUT theory (Multi-Attribute Utility Theory) for decision making from a finite set of possibilities, which involve multiple criteria to be analyzed. Additionally, it was proposed a metamodel which can be used to describe the application s requirements in terms of the non-functional requirements criteria and their expected values, to express them in order to make the selection of the desired configuration. As a proof of concept, it was implemented a module that performs the dynamic choice of configurations, the MoSAC. This module was implemented using a component-based development approach (CBD), performing a selection of architectural configurations based on the proposed selection process involving multiple criteria. This work also presents a case study where an application was developed in the context of Digital TV to evaluate the time spent on the module to return a valid configuration to be used in a middleware with autoadaptative features, the middleware AdaptTV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a model based approach for pointcut management in the presence of evolution in aspect oriented systems. The proposed approach, called conceptual visions based pointcuts, is motivated by the observation of the shortcomings in traditional approaches pointcuts definition, which generally refer directly to software structure and/or behavior, thereby creating a strong coupling between pointcut definition and the base code. This coupling causes the problem known as pointcut fragility problem and hinders the evolution of aspect-oriented systems. This problem occurs when all the pointcuts of each aspect should be reviewed due to any software changes/evolution, to ensure that they remain valid even after the changes made in the software. Our approach is focused on the pointcuts definition based on a conceptual model, which has definitions of the system's structure in a more abstract level. The conceptual model consists of classifications (called conceptual views) on entities of the business model elements based on common characteristics, and relationships between these views. Thus the pointcuts definitions are created based on the conceptual model rather than directly referencing the base model. Moreover, the conceptual model contains a set of relationships that allows it to be automatically verified if the classifications in the conceptual model remain valid even after a software change. To this end, all the development using the conceptual views based pointcuts approach is supported by a conceptual framework called CrossMDA2 and a development process based on MDA, both also proposed in this work. As proof of concept, we present two versions of a case study, setting up a scenario of evolution that shows how the use of conceptual visions based pointcuts helps detecting and minimizing the pointcuts fragility. For the proposal evaluation the Goal/Question/Metric (GQM) technique is used together with metrics for efficiency analysis in the pointcuts definition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Multiobjective Spanning Tree is a NP-hard Combinatorial Optimization problem whose application arises in several areas, especially networks design. In this work, we propose a solution to the biobjective version of the problem through a Transgenetic Algorithm named ATIS-NP. The Computational Transgenetic is a metaheuristic technique from Evolutionary Computation whose inspiration relies in the conception of cooperation (and not competition) as the factor of main influence to evolution. The algorithm outlined is the evolution of a work that has already yielded two other transgenetic algorithms. In this sense, the algorithms previously developed are also presented. This research also comprises an experimental analysis with the aim of obtaining information related to the performance of ATIS-NP when compared to other approaches. Thus, ATIS-NP is compared to the algorithms previously implemented and to other transgenetic already presented for the problem under consideration. The computational experiments also address the comparison to two recent approaches from literature that present good results, a GRASP and a genetic algorithms. The efficiency of the method described is evaluated with basis in metrics of solution quality and computational time spent. Considering the problem is within the context of Multiobjective Optimization, quality indicators are adopted to infer the criteria of solution quality. Statistical tests evaluate the significance of results obtained from computational experiments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the world we are constantly performing everyday actions. Two of these actions are frequent and of great importance: classify (sort by classes) and take decision. When we encounter problems with a relatively high degree of complexity, we tend to seek other opinions, usually from people who have some knowledge or even to the extent possible, are experts in the problem domain in question in order to help us in the decision-making process. Both the classification process as the process of decision making, we are guided by consideration of the characteristics involved in the specific problem. The characterization of a set of objects is part of the decision making process in general. In Machine Learning this classification happens through a learning algorithm and the characterization is applied to databases. The classification algorithms can be employed individually or by machine committees. The choice of the best methods to be used in the construction of a committee is a very arduous task. In this work, it will be investigated meta-learning techniques in selecting the best configuration parameters of homogeneous committees for applications in various classification problems. These parameters are: the base classifier, the architecture and the size of this architecture. We investigated nine types of inductors candidates for based classifier, two methods of generation of architecture and nine medium-sized groups for architecture. Dimensionality reduction techniques have been applied to metabases looking for improvement. Five classifiers methods are investigated as meta-learners in the process of choosing the best parameters of a homogeneous committee.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Multiobjective Spanning Tree Problem is NP-hard and models applications in several areas. This research presents an experimental analysis of different strategies used in the literature to develop exact algorithms to solve the problem. Initially, the algorithms are classified according to the approaches used to solve the problem. Features of two or more approaches can be found in some of those algorithms. The approaches investigated here are: the two-stage method, branch-and-bound, k-best and the preference-based approach. The main contribution of this research lies in the fact that no research was presented to date reporting a systematic experimental analysis of exact algorithms for the Multiobjective Spanning Tree Problem. Therefore, this work can be a basis for other research that deal with the same problem. The computational experiments compare the performance of algorithms regarding processing time, efficiency based on the number of objectives and number of solutions found in a controlled time interval. The analysis of the algorithms was performed for known instances of the problem, as well as instances obtained from a generator commonly used in the literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work seeks to propose and evaluate a change to the Ant Colony Optimization based on the results of experiments performed on the problem of Selective Ride Robot (PRS, a new problem, also proposed in this paper. Four metaheuristics are implemented, GRASP, VNS and two versions of Ant Colony Optimization, and their results are analyzed by running the algorithms over 32 instances created during this work. The metaheuristics also have their results compared to an exact approach. The results show that the algorithm implemented using the GRASP metaheuristic show good results. The version of the multicolony ant colony algorithm, proposed and evaluated in this work, shows the best results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest of the Computer Science education community for including testing concepts on introductory programming courses. Aiming at contributing to this issue, we introduce POPT, a Problem-Oriented Programming and Testing approach for Introductory Programming Courses. POPT main goal is to improve the traditional method of teaching introductory programming that concentrates mainly on implementation and neglects testing. POPT extends POP (Problem Oriented Programing) methodology proposed on the PhD Thesis of Andrea Mendonça (UFCG). In both methodologies POPT and POP, students skills in dealing with ill-defined problems must be developed since the first programming courses. In POPT however, students are stimulated to clarify ill-defined problem specifications, guided by de definition of test cases (in a table-like manner). This paper presents POPT, and TestBoot a tool developed to support the methodology. In order to evaluate the approach a case study and a controlled experiment (which adopted the Latin Square design) were performed. In an Introductory Programming course of Computer Science and Software Engineering Graduation Programs at the Federal University of Rio Grande do Norte, Brazil. The study results have shown that, when compared to a Blind Testing approach, POPT stimulates the implementation of programs of better external quality the first program version submitted by POPT students passed in twice the number of test cases (professor-defined ones) when compared to non-POPT students. Moreover, POPT students submitted fewer program versions and spent more time to submit the first version to the automatic evaluation system, which lead us to think that POPT students are stimulated to think better about the solution they are implementing. The controlled experiment confirmed the influence of the proposed methodology on the quality of the code developed by POPT students