51 resultados para Permeabilidade ao Vapor
Resumo:
It is presented an integrated geophysical investigation of the spatial distribution of faults and deformation bands (DB´s) in a faulted siliciclastic reservoir analogue, located in Tucano Basin, Bahia State, northeastern Brazil. Ground Penetrating Radar (GPR) and permeability measurements allowed the analysis of the influence of DB´s in the rock permeability and porosity. GPR data were processed using a suitable flow parametrization in order to highlight discontinuities in sedimentary layers. The obtained images allowed the subsurface detection of DB´s presenting displacements greater that 10 cm. A good correlation was verified between DB´s detected by GPR and those observed in surface, the latter identified using conventional structural methods. After some adaptations in the minipermeameter in order to increase measurement precision, two approaches to measure permeabilities were tested: in situ and in collected cores. The former approach provided better results than the latter and consisted of scratching the outcrop surface, followed by direct measurements on outcrop rocks. The measured permeability profiles allowed to characterize the spatial transition from DB´s to undeformed rock; variation of up to three orders of magnitude were detected. The permeability profiles also presented quasi-periodic patterns, associated with textural and granulometric changes, possibly associated to depositional cycles. Integrated interpretation of the geological, geophysical and core data, provided the subsurface identification of an increase in the DB´s number associated with a sedimentary layer presenting granulometric decrease at depths greater than 8 m. An associated sharp decrease in permeability was also measured in cores from boreholes. The obtained results reveal that radagrams, besides providing high resolution images, allowing the detection of small structures (> 10 cm), also presented a correlation with the permeability data. In this way, GPR data may be used to build upscaling laws, bridging the gap between outcrop and seismic data sets, which may result in better models for faulted reservoirs
Resumo:
The Monte Carlo method is accurate and is relatively simple to implement for the solution of problems involving complex geometries and anisotropic scattering of radiation as compared with other numerical techniques. In addition, differently of what happens for most of numerical techniques, for which the associated simulations computational time tends to increase exponentially with the complexity of the problems, in the Monte Carlo the increase of the computational time tends to be linear. Nevertheless, the Monte Carlo solution is highly computer time consuming for most of the interest problems. The Multispectral Energy Bundle model allows the reduction of the computational time associated to the Monte Carlo solution. The referred model is here analyzed for applications in media constituted for nonparticipating species and water vapor, which is an important emitting species formed during the combustion of hydrocarbon fuels. Aspects related to computer time optimization are investigated the model solutions are compared with benchmark line-by-line solutions
Resumo:
Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter
Resumo:
This study focused object a steam generation system, steam distribution and condensate return a textile plant located in Rio Grande do Norte. The work was based on the following objectives: Knowing the use of saturated water vapor in the dyeing and finishing processes in a textile plant; To study the various aspects of a steam distribution system to identify the ways in which energy losses occur; Obtain quantitative information of the main loss in steam generation system and steam distribution and to measure the losses, water and steam system; Using the flash steam as a means of cost reduction. For it was made use of the calculation of financial gains made in their respective improvements. As a database for the development of working registers are used in industrial processes, data from utility systems, laboratory data analysis and on-line analyzers, covering the period 2013. Using the principles set conservation laws mass and energy, those data showed that the loss of water and energy in the steam system are significant and that the environmental and economic gains to be obtained with improvement actions are quite significant. Based on the data and results suggest that future studies deem the continuity approach to steam generation systems, distribution and mainly condensate return.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.