88 resultados para Perfuração esofágica
Resumo:
The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries
Resumo:
Os poços HPHT atravessam zonas anormalmente pressurizadas e com altos gradientes de temperatura. Esses poços apresentam elevadas concentrações de tensões produzidas pelas operações de perfuração e fraturamento hidráulico, flutuações da pressão e temperatura, forças dinâmicas geradas durante a perfuração, formações inconsolidadas, entre outros aspectos, podendo resultar em falhas mecânicas na bainha de cimento. Tais falhas comprometem a estabilidade mecânica do poço e o isolamento das zonas produtoras de óleos e/ou gás. Para que operações corretivas não se façam necessárias, é preciso adequar as pastas às condições de cada poço. Sistemas de pastas de cimento para poços HPHT requerem um bom controle de suas propriedades termo-mecânicas. Visto que a temperaturas superiores a 110 oC (230 oF) o cimento, após alcançar um valor máximo de resistência, inicia um processo de perda de resistência (retrogressão). Para prevenir esse efeito substitui-se parcialmente o cimento Portland por sílica com objetivo de incrementar a reação pozolânica. Esta reação modifica a trajetória do processo natural de hidratação do cimento, o gel de silicato de cálcio hidratado (C-S-H) se converte em várias outras fases com maior resistência. Polímeros também são adicionados para proporcionar maior flexibilidade e agir como barreira à propagação de trincas desenvolvidas sob tensão. O presente trabalho teve como objetivo estudar o comportamento do sistema cimento/sílica/polímero quando submetido às condições de alta temperatura e alta pressão. Foram formuladas pastas de cimento puro, pastas contendo 40 % BWOC de sílica flour e pastas com diferentes concentrações de poliuretana (5 % a 25 %) e 40 % BWOC de sílica flour. O peso específico das pastas foi fixado em 1,87 g/cm3 (15,6 lb/gal). Os resultados demonstram que as resistências da pasta contendo 40% de sílica e das com adição de polímero foram muito superiores a da pasta de cimento puro, não ocorrendo o efeito da retrogressão. As pastas com polímero apresentaram um crescente aumento da tenacidade com o aumento da concentração da mesma, sendo assim capaz de suportar as tensões. Além de se manterem estáveis termicamente acima de 180 ºC. O sistema também apresentou excelentes resultados de filtrado, reologia, água livre, estabilidade e permeabilidade. Sendo assim, o mesmo mostrou ser aplicável a poços HPHT
Resumo:
Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing
Resumo:
The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate
Resumo:
The study of complex systems has become a prestigious area of science, although relatively young . Its importance was demonstrated by the diversity of applications that several studies have already provided to various fields such as biology , economics and Climatology . In physics , the approach of complex systems is creating paradigms that influence markedly the new methods , bringing to Statistical Physics problems macroscopic level no longer restricted to classical studies such as those of thermodynamics . The present work aims to make a comparison and verification of statistical data on clusters of profiles Sonic ( DT ) , Gamma Ray ( GR ) , induction ( ILD ) , neutron ( NPHI ) and density ( RHOB ) to be physical measured quantities during exploratory drilling of fundamental importance to locate , identify and characterize oil reservoirs . Software were used : Statistica , Matlab R2006a , Origin 6.1 and Fortran for comparison and verification of the data profiles of oil wells ceded the field Namorado School by ANP ( National Petroleum Agency ) . It was possible to demonstrate the importance of the DFA method and that it proved quite satisfactory in that work, coming to the conclusion that the data H ( Hurst exponent ) produce spatial data with greater congestion . Therefore , we find that it is possible to find spatial pattern using the Hurst coefficient . The profiles of 56 wells have confirmed the existence of spatial patterns of Hurst exponents , ie parameter B. The profile does not directly assessed catalogs verification of geological lithology , but reveals a non-random spatial distribution
Resumo:
Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing
Resumo:
With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version
Resumo:
The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application
Resumo:
Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index
Resumo:
Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction
Resumo:
Food habits and morpho-histology of the digestive tract of marbled swamp eel, Synbranchus marmoratus (Block, 1917) were investigated. The fish samples were captured during August, 2007 to July, 2008 in the Marechal Dutra reservoir, Acari, Rio Grande do Norte. The rain fall data was obtained from EMPARN. The fish captured, were measured, weighed, dissected, eviscerated and individual stomach weights were registered. The stomach contents analyses were carried out based on volumetric method, points, frequency of occurrence and applying the Index of Relative Importance. The degrees of repletion of the stomachs were determined besides the Index of Repletion relating to feeding activity variations and frequency of ingestion during the rainy and dry seasons. The rainfall varied from 0 mm a 335 mm with a mean value of 71.62 mm. Highest rainfall of 335.5 mm was registered in March, 2008 and August to December was the dry period. During the dry period the study species presented high degrees of repletion of the stomachs, with a peak value in the month of September (mean = 4.54; ± SD = 0.56). The minimum mean value of = 3.99 ± SD = 0.25 was registered in the month of May during the rainy period. The stomach contents of S. marmoratus registered show that this fish prefers animals, 78.22% of crustaceans 2.85% of mollusks, 3.25% of fish, 1.4% of insects and 13.5% of semi-digested organic matter, thus characterizing the study species as a carnivore with a preference for crustaceans. The morpho-histological aspects of the digestive tract of S. marmoratus indicate that the mouth is terminal adapted to open widely, thin lips with taste buds, small villiform teeth forming a single series on maxillas, four pairs of branchial arches with short and widely spaced branchial rays. The oesophagus is short and cylindrical with a small diameter. The oesophagus wall is thick with mucas surface and internal parallel folds. The stomach is retilinical in form, presenting cardiac, caecal and pyloric portions. The caecal portion is long and is intermediary in position between the cardiac and pyloric portions. The cardiac portion of the stomach is short and cylindrical formed of simple epithelial cylindrical mucus cells. The caecal portion is long with narrow walls, a big cavity and smaller folds which give rise to gastric glands. The phyloric portion has no glands and primary or secondary mucas folds. The morphohistological aspects of the digestive tract of S. marmoratus indicate its adaptation to a carnivorous feeding habit
Resumo:
It is a descriptive-exploratory research, with a quantitative approach, aiming to characterize typical occupational accident suffered by the professionals from nursery group, in the Intensive Care Units and Emergency in a hospital in Natal-RN, trying to identify the factors that contribute to those accidents; to identify some information taken by those professionals related to the accident risks; to know the procedures taken after each accident. This sample is composed by 176 professionals that are 44 nurses and 132 nursing technicians/auxiliaries, collected from March to April 2010. The results related to the personal characterization of the nursery group showed that 31 (18.61%) are between the 36-40 years of age; 148 (84.09%) females and 96 (55.68%) had finished High School. Related to the professional characterization, 53 (30.11%) are nurses, and 123 (69.88%) nursing technicians and auxiliaries; 44 (25.00%) are working as nurses, and 132 (75.00%) as nursing technicians and auxiliaries; 45 (25.56%) are working in the nursery area between 15 to 20 years and 11 months; 53 (30.11%) are in this institution between 10 to 14 years and 11 months; 79 (44.88%) work in the ICU; 55 (31.25%) are working in this area from 1 to 4 years and 11 months; 110 (62.50%) like to work in this area; 161 (91.47%) work 30 to 40 hours per week; 90 (51,13%) have another employment. Related to knowledge about typical occupational accident, 167 (94.88%) said they know about it; 96 (54.54%) know the accident rules; 103 (58.52%) think it is important to talk about this subject in the nursery courses; 92 (52.27%) said this subject is important to be discussed in the work and 372 (87.73%) think education is necessary to reduce accident. Related to the data about accidents, 104 (59.09%) have suffered typical occupational accident, among them 69 (39.20%) have suffered it once; 47 (36.19%) did not register any accident; 60 (57.69%) were caring some patient during the accident; 47 (45.19%) of them occurred in the ICU; 50 (48.07%) professionals were working during the night period; 69 (66.34%) have suffered perforation; 86 (82.69%) had upper limbs affected; 64 (61.53%) were affected by needle; about the reason of the accident, 89 (60.54%) said it occurred due to carelessness. Related to the accident evolution, 88 (85.57%) did not need to remain off work after accident; 13 (81.25%) remained off work during 15 days; 87 (83.65%) had no sequelae and for 101 (97.11%) it was not necessary rehabilitation. We conclude that typical occupational accident can occur with young workers who admit a knowledge about the subject, however they do almost nothing to prevent it. We believe this research has contributed to the characterization of this kind of accident suffered by the nursery group of a public hospital in Natal, and it can stimulate the creation and reformulation of personal protection against typical occupational accident suffered by nursery professionals
Resumo:
In this work, a performance analysis of transmission schemes employing turbo trellis coded modulation. In general, the performance analysis of such schemes is guided by evaluating the error probability of these schemes. The exact evaluation of this probability is very complex and inefficient from the computational point of view, a widely used alternative is the use of union bound of error probability, because of its easy implementation and computational produce bounds that converge quickly. Since it is the union bound, it should use to expurge some elements of distance spectrum to obtain a tight bound. The main contribution of this work is that the listing proposal is carried out from the puncturing at the level of symbol rather than bit-level as in most works of literature. The main reason for using the symbol level puncturing lies in the fact that the enummerating function of the turbo scheme is obtained directly from complex sequences of signals through the trellis and not indirectly from the binary sequences that require further binary to complex mapping, as proposed by previous works. Thus, algorithms can be applied through matrix from the adjacency matrix, which is obtained by calculating the distances of the complex sequences of the trellis. This work also presents two matrix algorithms for state reduction and the evaluation of the transfer function of this. The results presented in comparisons of the bounds obtained using the proposed technique with some turbo codes of the literature corroborate the proposition of this paper that the expurgated bounds obtained are quite tight and matrix algorithms are easily implemented in any programming software language
Resumo:
The formation of paraffin deposits is common in the petroleum industry during production, transport and treatment stages. It happens due to modifications in the thermodynamic variables that alter the solubility of alkanes fractions present in petroleum. The deposition of paraffin can provoke significant and growing petroleum losses, arriving to block the flow, hindering to the production. This process is associated with the phases equilibrium L-S and the stages and nucleation, growth and agglomeration the crystals. That process is function of petroleum intrinsic characteristics and temperature and pressure variations, during production. Several preventive and corrective methods are used to control the paraffin crystallization, such as: use of chemical inhibitors, hot solvents injection, use of termochemistry reactions, and mechanical removal. But for offshore exploration this expensive problem needs more investigation. Many studies have been carried through Wax Appearance Temperature (WAT) of paraffin; therefore the formed crystals are responsible for the modification of the reologics properties of the oil, causing a lot off operational problems. From the determination of the WAT of a system it is possible to affirm if oil presents or not trend to the formation of organic deposits, making possible to foresee and to prevent problems of wax crystallization. The solvent n-paraffin has been widely used as fluid of perforation, raising the production costs when it is used in the removal paraffin deposits, needing an operational substitute. This study aims to determine the WAT of paraffin and the interference off additives in its reduction, being developed system paraffin/solvent/surfactant that propitiates the wax solubilization. Crystallization temperatures in varied paraffin concentrations and different solvents were established in the first stage of the experiments. In the second stage, using the methodology of variation of the photoelectric signal had been determined the temperature of crystallization of the systems and evaluated the interferences of additives to reduction of the WAT. The experimental results are expressed in function of the variations of the photoelectric signals during controlled cooling, innovating and validating this new methodology to determine WAT, relatively simple with relation the other applied that involve specific equipments and of high cost. Through the curves you differentiate of the results had been also identified to the critical stages of growth and agglomeration of the crystals that represent to the saturation of the system, indicating difficulties of flow due to the increase of the density
Resumo:
Enzymes have been widely used in biosynthesis/transformation of organic compounds in substitution the classic synthetic methods. This work is the first writing in literature of enzymatic synthesis for attainment the biossurfactants, the use glucose sucrose, ricinoleic acid e castor oil as substratum, and as biocatalyst, used immobilized lipase Thermomyces lanuginose, Rhizomucor miehei and the Candida antarctica lipase B; alkaline protease and neutral protease from Bacillus subtillis and yeast Saccharomyces cerevisiaeI. The analysis of HPLC (high performance liquid chromatography) showed that highest conversions were reached of used the alkaline protease from Bacillus subtillis. Laboratory tests, to evaluate the applicability, indicated that the produced biosurfactantes had good stability in presence of salts (NaCl) and temperature (55 e 25°C), they are effective in the reduction of the superficial tension and contac angle, but they have little foaming capacity, when compared with traditional detergents. These results suggest that the prepared surfactants have potential application as wetting agent and perforation fluid stabilizer