59 resultados para MICROEMULSION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination and monitoring of metallic contaminants in water is a task that must be continuous, leading to the importance of the development, modification and optimization of analytical methodologies capab le of determining the various metal contaminants in natural environments, because, in many cases, the ava ilable instrumentation does not provide enough sensibility for the determination of trace values . In this study, a method of extraction and pre- concentration using a microemulsion system with in the Winsor II equilibrium was tested and optimized for the determination of Co, Cd, P b, Tl, Cu and Ni through the technique of high- resolution atomic absorption spectrometry using a continuum source (HR-CS AAS). The optimization of the temperature program for the graphite furnace (HR-CS AAS GF) was performed through the pyrolysis and atomization curves for the analytes Cd, Pb, Co and Tl with and without the use of different chemical modifiers. Cu and Ni we re analyzed by flame atomization (HR-CS F AAS) after pre-concentr ation, having the sample introduction system optimized for the realization of discrete sampling. Salinity and pH levels were also analyzed as influencing factors in the efficiency of the extraction. As final numbers, 6 g L -1 of Na (as NaCl) and 1% of HNO 3 (v/v) were defined. For the determination of the optimum extraction point, a centroid-simplex statistical plan was a pplied, having chosen as the optimum points of extraction for all of the analytes, the follo wing proportions: 70% aqueous phase, 10% oil phase and 20% co-surfactant/surfactant (C/S = 4). After extraction, the metals were determined and the merit figures obtained for the proposed method were: LOD 0,09, 0,01, 0,06, 0,05, 0,6 and 1,5 μg L -1 for Pb, Cd, Tl, Co, Cu and Ni, re spectively. Line ar ranges of ,1- 2,0 μg L -1 for Pb, 0,01-2,0 μg L -1 for Cd, 1,0 - 20 μg L -1 for Tl, 0,1-5,0 μg L -1 for Co, 2-200 μg L -1 and for Cu e Ni 5-200 μg L -1 were obtained. The enrichment factors obtained ranged between 6 and 19. Recovery testing with the certified sample show ed recovery values (n = 3, certified values) after extraction of 105 and 101, 100 and 104% for Pb, Cd, Cu and Ni respectively. Samples of sweet waters of lake Jiqui, saline water from Potengi river and water produced from the oil industry (PETROBRAS) were spiked and the recovery (n = 3) for the analytes were between 80 and 112% confirming th at the proposed method can be used in the extraction. The proposed method enabled the sepa ration of metals from complex matrices, and with good pre-concentration factor, consistent with the MPV (allowed limits) compared to CONAMA Resolution No. 357/2005 which regulat es the quality of fresh surface water, brackish and saline water in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently the market requires increasingly pure oil derivatives and, with that, comes the need for new methods for obtaining those products that are more efficient and economically viable. Considering the removal of sulfur from diesel, most refineries uses catalytic hydrogenation process, the hydrodesulfurization. These processes needs high energy content and high cost of production and has low efficiency in removing sulfur at low concentrations (below 500 ppm). The adsorption presents itself as an efficient and economically viable alternative in relation to the techniques currently used. With that, the main purpose of this work is to develop and optimize the obtaining of new adsorbents based on diatomite, modified with two non ionic surfactants microemulsions, adding efficiency to the material, to its application on removal of sulfur present in commercial diesel. Analyses were undertaken of scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray fluorescence (XRF), thermogravimetry (TG) and N2 adsorption (BET) for characterization of new materials obtained. The variables used for diatomite modification were: microemulsion points for each surfactant (RNX 95 and UNTL 90), microemulsion aqueous phase through the use or non-use of salts (CaCl2 and BaCl2), the contact time during the modification and the contact form. The study of adsorption capacity of materials obtained was performed using a statistical modeling to evaluate the influence of salt concentration in the aqueous phase (20 ppm to 1500 ppm), finite bath temperature (25 to 60° C) and the concentration of sulphur in diesel. It was observed that the temperature and the concentration of sulphur (300 to 1100 ppm) were the most significant parameters, in which increasing their values increase the ability of modified clay to adsorb the sulphur in diesel fuel. Adsorption capacity increased from 0.43 to mg/g 1.34 mg/g with microemulsion point optimization and with the addition of salts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil industry is one of the activities that generates more waste to the environment. The drill cuttings is a waste generated in large quantities in the drilling process and that may cause environmental damage such as soil contamination and consequently the contamination of groundwater if disposed of without prior treatment. Arises the need to develop scientific activities and research ways to adapt these wastes the current environmental standards. In the case of solid wastes, the NBR 10004: 2004 of the Brazilian Association of Technical Standards (ABNT) classifies them into class I waste (hazardous) and class II (not dangerous), which determines which wastes may or may not be discarded in the environment without causing environmental impact. This study presents a novel alternative for treating drill cuttings, where this waste was classified as class I (Abreu & Souza, 2005), mainly by removing the n-paraffin present in it, since this arises when using drilling fluids base oil. Using microemulsion systems promotes the removal of this contaminant drill cuttings samples from wells located in Alto do Rodrigues - RN. Initially, we determined the concentration of paraffin using infrared method in samples were extracted with ultrasound, we obtained a paraffin concentration in the range from 36.59 to 43.52 g of paraffin per kilogram of cuttings. Used two microemulsion systems containing two nonionic surfactants from different classes, one is an alcohol ethoxylated (UNTL-90) and the other an nonylphenol ethoxylated (RNX 110). The results indicated that the system UNTL-90 surfactant has better efficiency than the system with RNX 110. The study of the influence of contact time at the extraction showed that for times greater than 25 minutes has a tendency to increase the percentage extraction with increasing contact time. It was also observed that the extraction is fast because at 1 minute contact has 22.7% extraction. The reuse of the microemulsion system without removing the paraffin extracted in previous steps, showed reduction of 29.32 in percentage of extraction by comparing the first and third extraction, but by comparing the first and second extractions reduction is 8.5 in percentage extraction, so the systems reuse optimization can be an option for economically viable removing paraffin from cuttings. The extraction with shaking is more effective in the treatment of cuttings, reaching the extraction percentage of 87.04%, that is, obtaining a drill cuttings with 0.551% paraffin. Using the percentage of paraffin employed in non-aqueous drilling fluids and fluid maximum limit on cuttings for disposal established by the Environmental Protection Agency of the United States (US EPA), one arrives at the conclusion that the level of paraffin on gravel cannot exceed 3.93%. Conclude that the amount of paraffin in the treated cuttings with the microemulsion system with shaking is below the established by US EPA, showing that the system used was efficient in removing the paraffin from the drill cuttings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclophosphamide (CYP) is an antineoplastic agent used for the treatment of many neoplastic and inflammatory diseases. Hemorrhagic cystitis is a frequent side effect of CYP. Several studies show that simvastatin has important pleiotropic (anti-inflammatory and immunomodulatory) effects. The purpose of the study was to investigate the effect of simvastatin on bladder, ureter and kidney injury caused by CYP. Methods: Adult male Wistar rats were randomly divided into three groups. The CYP/SIM group received simvastatin microemulsion by gavage during 7 days (10 mg/kg body wt) before the administration of CYP and the CYP/SAL group rats received saline 0.9%. The control rats were not treated. After that, all rats were treated with a single dose of CYP 200 mg/kg body wt intraperitoneally. The rats were killed 24 h after CYP administration. Plasma cytokines (TNF-a, IL-1b, IL-6) were measured by ELISA. Macro and light microscopic study was performed in the bladder, kidney and ureter. Results: In the bladders of CYP/SIMV treated rats edema of lamina propria with epithelial and sub-epithelial hemorrhage were lower than in CYP/SAL treated rats. The scores for macroscopic and microscopic evaluation of bladder and ureter were significantly lower in CYP/SIMV rats than in CYP/SAL rats. The kidney was not affected. The expression of TNF-a, IL-1b and IL-6 was significatly lower in CF/SINV rats (164.8±22, 44.8±8 and 52.4±13) than in CF/SAL rats (378.5±66, 122.9±26 e 123.6±18), respectively. Conclusion: The results of the current study suggest that simvastatin pretreatment attenuated CYP-induced urotelium inflammation and decreased the activities of cytokines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explores the potential of the simvastatin to ameliorate inflammation and infection in open infected skin wounds of rats. Methods: Fourteen Wistar rats weighing 285±12g were used. The study was done in a group whose open infected skin wounds were treated with topical application of sinvastatina microemulsion (SIM, n=7) and a second group with wounds treated with saline 0.9 % (SAL, n=7). A bacteriological exam of the wounds fluid for gram positive and gram negative bacteria, the tecidual expression of TNFá and IL-1â by imunohistochemical technique, and histological analysis by HE stain were performed. Results: The expression of TNFa could be clearly demonstrated in lower degree in skin wounds treated with simvastatin (668.6 ± 74.7 ìm2) than in saline (2120.0 ± 327.1 ìm2). In comparison, wound tissue from SIM group displayed leukocyte infiltration significantly lower than that observed in SAL group (p<0.05). Culture results of the samples taken from wound fluid on fourth post treatment day revealed wound infection in only one rat of group simvastatin (SIM), where Proteus mirabilis, Escherchia coli and Enterobacter sp were isolated. In the rats whose wounds were treated with saline (SAL), polymicrobial infection with more than 100,000 CFU/g was detected in all the wounds. Conclusion: In addition to its antiinflammatory properties, the protective effects of simvastatin in infected open skin wounds is able to reduce infection and probably has antibacterial action. The potential to treat these wounds with statins to ameliorate inflammation and infection is promising

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron is a semi-metal present in certain types of soils and natural waters. It is essential to the healthy development of plants and non-toxic to humans, depending on its concentration. It is used in various industries and it s present in water production coming from oil production. More specifically in Rio Grande do Norte, one of the largest oil producers on shore of Brazil, the relationship water/oil in some fields becomes more than 90%. The most common destination of this produced water is disposal in open sea after processing to meet the legal specification. In this context, this research proposes to study the extraction of boron in water produced by microemulsion systems for industrial utilization. It was taken into account the efficiency of extraction of boron related to surfactant (DDA and OCS, both characterized by FT-IR), cosurfactant (butanol and isoamyl alcohol), organic phase (kerosene and heptanes) and aqueous phase (solution of boron 3.6 ppm in alkaline pH). The ratio cosurfactant/ surfactant used was four and the percentage of organic phases for all points of study was set at 5%. It was chosen points with the highest percentage of aqueous phase. Each system was designed for three points of different compositions in relation to the constituents of a pseudoternary diagram. These points were chosen according to studies of phase behavior in pseudoternary diagrams made in previous studies. For this research, points were chosen in the Winsor II region. The excess aqueous solution obtained in these systems was separated and analyzed by ICP OES. For the data set obtained, the better efficiency in the extraction of boron was obtained using the system with DAC, isoamyl alcohol and heptanes, which extracted 49% in a single step. OCS was not viable to the extraction of boron by microemulsion system in the conditions defined in this study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The program PROBIODIESEL from the Ministry of Science and Technology has substantially increased glycerine, obtained as a sub-product of biodiesel production process, making it necessary to seek alternatives for the use of this co-product. On the other hand, herbicides although play a role of fundamental importance in the agricultural production system in force, have been under growing concern among the various segments of society because of their potential environmental risk. In this work, we used glycerin in microemulsion systems for application of herbicides, to improve efficiency and lower environmental pollution caused by the loss of those products to the environment. To obtain the systems of microemulsinados were used Unitol L90 NP and Renex 40 as surfactants, butanol as co-surfactant, coconut oil as oil phase and aqueous phase as we used solutions of glycerin + water. Through the determination of phase diagrams, the microemulsion region was found in the system E (L90 Unitol, coconut oil and glycerin + water 1:1). Three points were chosen to the aqueous phase rich in characterization and application in the solubilization of glyphosate and atrazine. Three experiments were performed in Horta, Department of Plant Sciences, Plant Science Sector, UFERSA, Mossoró-RN. The first experiment was conducted in randomized complete blocks with 20 treatments and four replications. The treatments consisted of five doses of the herbicide glyphosate (0.0, 0.45, 0.9, 1.35 and 1.8 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity of Brachiaria brizantha was measured at 7, 14, 28 and 60 DAA (days after application). At 60 DAA, we evaluated the biomass of plants. The second experiment was developed in randomized complete blocks with 20 treatments and four repetitions. The treatments consisted of five doses of the herbicide atrazine (0.0, 0.4, 0.8, 1.6 and 2.4 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity on Zea mays and Talinum paniculatum was evaluated at 2, 7, 20 DAA. The experiment III was developed in randomized complete blocks with 16 treatments and three repetitions. The treatments consisted of 16 combinations among the constituents of the microemulsion: Unitol L90 surfactant (0.0, 1.66, 5.0, 15 %) and glycerin (0.0, 4.44, 13.33 and 40.0 %). The phytotoxicity on Zea mays was evaluated at 1, 7 and 14 DAA. At 14 DAA, we evaluated the biomass of plants. The control plants using the microemulsions was lower than in the water due to the poisoning caused by the initial microemulsions in the leaves of the plants, a fact that hinders the absorption and translocation of the herbicide. There was no toxicity in Zea mays plants caused by the herbicide, however, were highly intoxicated by microemulsions. T. paniculatum was better controlled in spraying with the microemulsions, regardless of the dose of the herbicide. The glycerine did not cause plant damage. Higher poisoning the plants are caused by tensoactive Unitol L90 and higher rates occur with the use of higher concentrations of surfactant and glycerin, or microemulsion. The microemulsions used hampered the action of glyphosate in controlling B. brizantha and caused severe poisoning in corn, and these poisonings attributed mainly to the action of surfactant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties