69 resultados para Lubricating oils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow assurance has become one of the topics of greatest interest in the oil industry, mainly due to production and transportation of oil in regions with extreme temperature and pressure. In these operations the wax deposition is a commonly problem in flow of paraffinic oils, causing the rising costs of the process, due to increased energy cost of pumping, decreased production, increased pressure on the line and risk of blockage of the pipeline. In order to describe the behavior of the wax deposition phenomena in turbulent flow of paraffinic oils, under different operations conditions, in this work we developed a simulator with easy interface. For that we divided de work in four steps: (i) properties estimation (physical, thermals, of transport and thermodynamics) of n-alkanes and paraffinic mixtures by using correlations; (ii) obtainment of the solubility curve and determination the wax appearance temperature, by calculating the solid-liquid equilibrium of parafinnic systems; (iii) modelling wax deposition process, comprising momentum, mass and heat transfer; (iv) development of graphic interface in MATLAB® environment for to allow the understanding of simulation in different flow conditions as well as understand the matter of the variables (inlet temperature, external temperature, wax appearance temperature, oil composition, and time) on the behavior of the deposition process. The results showed that the simulator developed, called DepoSim, is able to calculate the profile of temperature, thickness of the deposit, and the amount of wax deposited in a simple and fast way, and also with consistent results and applicable to the operation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large investment in exploration activities offshore Brazil has generated new findings, generally in carbonate reservoirs, with different wettability conditions usually considered in the sandstone, strongly water-wet. In general, the carbonates reservoirs tend to be oil-wet, it difficult to mobilize of oil these reservoirs. These oils can be mobilized by different methods, or it may reverse the wettability of the surface of the reservoir and facilitate the flow of oil, improving production rates. Thus, the objective of this work was to study the influence of inversion on the wettability of the rock in the production and recovery of petroleum from carbonate reservoirs, using microemulsions. Three systems were chosen with different classes of surfactants: a cationic (C16TAB), an anionic (SDS) and nonionic (Unitol L90). Studies of the influence of salinity on the formation of the microemulsion as well as the characterization of fluids using density and viscosity measurements were also performed. To verify the potential of microemulsion systems in changing the wettability state of the chalk oil-wet to water-wet, contact angle measurements were performed using chalk of neutral-wet as surface material. Overall, with respect to the ionic character of the surfactants tested, the cationic surfactant (C16TAB) had a greater potential for reversal in wettability able to transform the rock wettability neutral to strongly water-wet, when compared with the anionic surfactant (SDS) and nonionic (Unitol L90), which showed similar behavior, improving the wettability of the rock to water. The microemulsions of all surfactants studied were effective in oil recovery, resulting in 76.92% for the system with C16TAB, 67.42% for the SDS and 66.30% for Unitol L90 of residual oil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of a promising alternative for the treatment of produced water from the oil industry envisaging its reuse was the focus of this work. Millions of liters of water are generated per day, containing heavy metals in low concentrations (< 0,15 mg/L for Pb, <0,04 mg/L for Cd, <0,04 mg/L for Ni). The technology applied to extract these metals from aqueous phase was the solvent extraction and the extratants used were vegetable oils originated from coconut oil. They can be used in natural form or as derivatives, known as MAC - Mixture of Carboxílics Acids. The determination of the heavy metal con¬centrations in a complex matrix was made by using the atomic absorption spectrometry technique (AAS). On the bench tests using synthetics aqueous solutions containing metals, vegetable oils showed no power to extract the metals studied. The extractant MAC was selective for the Pb> Cd> Ni, in the concentration of 8% in the same organic phase. In this condition, the lower efficiency of extraction obtained was 92% for the Pb, 69% for the Cd, in the range of pH ranging from 6 to 8. An experimental planning was conducted for continuous tests. The device used was called MDIF Misturador-Decantador à Inversão de Fases and the aqueous phase was produced water from Pólo Indutrial de Guamaré/RN . No correlation between the studied variables (concentration of metal, concentration of extratant and agitation in the mixing chamer) could be obtained, because of possible factors which occurred as: variation in the composition of the studied sample, phenomena of precipitation and complexation of metals in the reservoir of feed, solubility of extratant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drying of fruit pulps in spouted beds of inert particles has been indicated as a viable technique to produce fruit powders. Most of the processes employed to produce dried fruit pulps and juices, such as Foam Mat, encapsulation by co-crystallization and spray drying utilize adjuvant and additives (such as thickeners, coating materials, emulsifiers, acidulants, flavors and dyes), which is not always desirable. The fruit pulp composition exerts an important effect on the fruit powder production using a spouted bed. In the study by Medeiros (2001) it was concluded that lipids, starch and pectin contents play an important role on the process performance, enhancing the powder production; however, the drying of fruit pulps containing high content of reducing sugars (glucose and fructose) is practically unviable. This work has the objective of expanding the studies on drying of fruit pulps in spouted bed with aid of adjuvant (lipids, starch and pectin) aiming to enhance the dryer performance without jeopardizing the sensorial quality of the product. The optimum composition obtained by Medeiros (2001) was the basis for preparing the mixtures of pulps. The mixture formulations included pulps of mango (Mangifera indica), umbu (Spondias tuberosa) and red mombin (Spondia purpurea) with addition of cornstarch, pectin and lipids. Different products were used as lipids source: olive and Brazil nut oils, coconut milk, heavy milk, powder of palm fat and palm olein. First of all, experiments were conducted to define the best formulation of the fruit pulps mixture. This definition was based on the drying performance obtained for each mixture and on the sensorial characteristics of the dry powder. The mixture formulations were submitted to drying at fixed operating conditions of drying and atomizing air flow rate, load of inert particles, temperature and flow rate of the mixture. The best results were obtained with the compositions having powder of palm fat and palm olein in terms of the drying performance and sensorial analysis. Physical and physicochemical characteristics were determined for the dry powders obtained from the mixtures formulations. Solubility and reconstitution time as well as the properties of the product after reconstitution were also evaluated. According to these analyses, the powder from the mixtures formulations presented similar characteristics and compatible quality to those produced in other types of dryers. Considering that the palm olein is produced in Brazil and that it has been used in the food industry substituting the palm fat powder, further studies on drying performance were conducted with the composition that included the palm olein. A complete factorial design of experiments 23, with three repetitions at the central point was conducted to evaluate the effects of the air temperature, feeding flow rate and intermittence time on the responses related to the process performance (powder collection efficiency, material retained in the bed and angle of repose of the inert particles after the process) and to the product quality (mean moisture content, loss of vitamin C and solubility). Powder production was uniform for the majority of the experiments and the higher efficiency with lower retention in the bed (59.2% and 1.8g, respectively) were obtained for the air temperature of 80°C, mixture feed rate of 5ml/min in intervals of 10 min. The statistical analysis of the results showed that the process variables had individual or combined significant influences on the powder collection efficiency, material retention in the bed, powder moisture content and loss of vitamin C. At the experimental ranges of this work, the angle of repose and solubility were not influenced by the operating variables. From the results of the experimental design, statistical models were obtained for the powder moisture content and loss of vitamin C

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During production of oil and gas, there is also the production of an aqueous effluent called produced water. This byproduct has in its composition salts, organic compounds, gases and heavy metals. This research aimed to evaluate the integration of processes Induced Air Flotation (IAF) and photo-Fenton for reducing the Total Oils and Greases (TOG) present in produced water. Experiments were performed with synthetic wastewater prepared from the dispersion of crude oil in saline solution. The system was stirred for 25 min at 33,000 rpm and then allowed to stand for 50 min to allow free oil separation. The initial oil concentration in synthetic wastewater was 300 ppm and 35 ppm for the flotation and the photo-Fenton steps, respectively. These values of initial oil concentration were established based on average values of primary processing units in Potiguar Basin. The processes were studied individually and then the integration was performed considering the best experimental conditions found in each individual step. The separation by flotation showed high removal rate of oil with first-order kinetic behavior. The flotation kinetics was dependent on both the concentration and the hydrophilic-lipophilic balance (HLB) of the surfactant. The best result was obtained for the concentration of 4.06.10-3 mM (k = 0.7719 min-1) of surfactant EO 2, which represents 86% of reduction in TOG after 4 min. For series of surfactants evaluated, the separation efficiency was found to be improved by the use of surfactants with low HLB. Regarding the TOG reduction step by photo-Fenton, the largest oil removal reached was 84% after 45 min of reaction, using 0.44 mM and 10 mM of ferrous ions and hydrogen peroxide, respectively. The best experimental conditions encountered in the integrated process was 10 min of flotation followed by 45 min of photo-Fenton with overall TOG reduction of 99%, which represents 5 ppm of TOG in the treated effluent. The integration of processes flotation and photo-Fenton proved to be highly effective in reducing TOG of produced water in oilfields

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Natal still dominates the use of individual disposal systems for domestic sewage, once only 29% of the city has a sewarage system. Wastes that are accumulated in these individual treatment systems should be exhausted periodically, service provided by collector entrepreneurs. Some of these companies causing major damage to the environment. In Natal, only two companies have their own septage (RESTI) treatment system, which were designed with parameters from domestic sewage generating strain and inefficient systems. Therefore, the characterization becomes essential as a source of parameters for their design. Thus, this work presents the physical-chemical and microbiological characterization of waste pumped from individual sewage treatment systems. Samples collections were made weekly from 5 different trucks at the reception point on the treatment plant on the point of the preliminary treatment. From each truck it was taken 5 samples during the discharge in order to make a composite sample. Afterwards, samples were carried out to laboratory and analyses for determination of temperature, pH, conductivity, BOD, COD, nitrogen (ammonia e organic), alkalinity, oils, phosphorus, solids, faecal coliforms and helminth egg. The results were treated as a single database, and ranked according to its generating source (multi and single house, lodging, health, services and / or food), area of origin (metropolitan, south and north) and type of system (cesspits, septic tank and / or sink). Through these data it was possible to verify that the type of system adopted by most in Natal and the metropolitan region is cesspit, besides to confirm the difference between the septage of areas with a population have different social and economical characteristics. It was found that the septage have higher concentrations than domestic sewage, except for thermotolerant coliforms that showed concentrations of 1,38E+07. Among the parameters studied, is the median values identified for COD (3,549 mg / L), BOD (973mg / L) and total solids (3.557mg / L). The volatile fraction constitutes about 70% of the total solids of the septage. For helminths has been a median of 7 eggs/L. In general, the characteristics of the waste followed the variability found in the literature reviewed for all variables, showing high amplitudes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only 32% of the population of Natal is attended by sewage, while the remaining population use pits and septic tanks. The characterization of the contents of septic tanks and pits contributes to the performance of such system and may guide the decision on treatment of these contents. The main of this research is to characterize the contents of interior residential pits and septic tanks in the greater Natal, with the following specific goals: to develop and manufacture a sampler capable of collecting a representative sample of the entire column (the surface scum, the clarified liquid and sludge bottom); to compare the contents of the tanks with the pits; to compare the contents of the septage from vacuum trucks; to relate the composition content with socioeconomic characteristics of households; to compare the content in both chambers of the septic tanks in series; to assess the situation of the content before and six months after the cleanness; and ultimately propose a pilot scale plant for treatment of septage. Once the sampler was developed, samples were collected within 14 septic tanks and 10 pits in many districts of Natal. Medians of the 24 systems were obtained: temperature, pH, conductivity, oil and grease, total solids, total suspended solids and sediments of 28.0 °C, 6.95; 882 mS/cm, 75.2 mg/L; 10,169 mg/L, 6,509 mg/L and 175 mL/L respectively; 111.0 mgN/L for ammonia, 130.5 mgN/ L for organic nitrogen, 0.2 mgN/L for nitrite, 0.4 mg/L for nitrate; 8935 mgO2/L for COD, 29.2 mgP/L for total phosphorus, thermotolerant coliforms from 9.95 E +06 CFU/100mL helminth eggs and 9.2 eggs/L with a maximum concentration of 688 eggs/L and minimum of 0 eggs/L. Medians of organic nitrogen and TKN were significantly different between groups of tanks and pits. The systems with cleanness gap from 11 and 20 years presented the higher concentrations for most variables. The effluent from the toilets and bathrooms participate more effectively in contributing fractions of solids, alkalinity, nitrogen, COD, total phosphorus, thermotolerant coliforms and helminth eggs. The systems used by socioeconomics class with income from R$ 3,700.00 to R$ 7,600.00, presented higher concentrations for COD, nitrogen, solids and helminth eggs. The first of the two chambers had always presented higher concentrations over the second compartment. The analysis of variance for most variables, showed that the values of septic tanks, pits and septage from vacuum trucks belong to the same group. In the samples taken after cleanness, the median of pH and temperature increased, while alkalinity, COD, organic nitrogen, total phosphorus, ammonia and helminth eggs decreased. The oils and greases and thermotolerant coliforms had slightly varied due to the continuous release of sewage into the systems that maintained their steady state concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biodiesel is defined as the mono-alkyl ester derived from long-chain fatty acids, from renewable sources such as vegetable oils or animal fat, whose use is associated with the replacement of fossil fuels in diesel engine cycle. The biodiesel is susceptible to oxidation when exposed to air and this process of oxidation affects the quality of fuel, mainly due to long periods of storage. Because of this, the oxidation stability has been the focus of numerous researches since it directly affects the producers, distributors and users of fuel. One of the possibilities to increase the resistance of biodiesel is the autoxidation treatment with inhibitors of oxidation. The antioxidants can be used as potential inhibitors of the effects of oxidation on the kinematic viscosity and the index of acidity of biodiesel, thereby increasing oxidative stability. This work aims to examine the efficiency of antioxidants, α-tocopherol and butylated hydroxy-toluene (BHT), added the biodiesel content of remembrance through Pressurized-Differential Scanning Calorimetry (P-DSC), Thermogravimetry (TG) and Petrology. The results showed that the use of antioxidant BHT, at the concentration of 2000ppm, increased resistance to oxidation of the biodiesel and oxidative induction time (OIT), which is a better result as antioxidant than the α-tocopherol. With the thermogravimetric analysis, it was observed that the biodiesel presented an initial decomposition temperature of lower tendency than that of oil, demonstrating to be more volatile, bearing great similarity to the diesel and being characterized as an alternative fuel. The rheological analysis indicated that each sample of biodiesel behaved as a Newtonian fluid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition