126 resultados para Hiker Dice. Algoritmo Exato. Algoritmos Heurísticos


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reverse time migration algorithm (RTM) has been widely used in the seismic industry to generate images of the underground and thus reduce the risk of oil and gas exploration. Its widespread use is due to its high quality in underground imaging. The RTM is also known for its high computational cost. Therefore, parallel computing techniques have been used in their implementations. In general, parallel approaches for RTM use a coarse granularity by distributing the processing of a subset of seismic shots among nodes of distributed systems. Parallel approaches with coarse granularity for RTM have been shown to be very efficient since the processing of each seismic shot can be performed independently. For this reason, RTM algorithm performance can be considerably improved by using a parallel approach with finer granularity for the processing assigned to each node. This work presents an efficient parallel algorithm for 3D reverse time migration with fine granularity using OpenMP. The propagation algorithm of 3D acoustic wave makes up much of the RTM. Different load balancing were analyzed in order to minimize possible losses parallel performance at this stage. The results served as a basis for the implementation of other phases RTM: backpropagation and imaging condition. The proposed algorithm was tested with synthetic data representing some of the possible underground structures. Metrics such as speedup and efficiency were used to analyze its parallel performance. The migrated sections show that the algorithm obtained satisfactory performance in identifying subsurface structures. As for the parallel performance, the analysis clearly demonstrate the scalability of the algorithm achieving a speedup of 22.46 for the propagation of the wave and 16.95 for the RTM, both with 24 threads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present indefinite integration algorithms for rational functions over subfields of the complex numbers, through an algebraic approach. We study the local algorithm of Bernoulli and rational algorithms for the class of functions in concern, namely, the algorithms of Hermite; Horowitz-Ostrogradsky; Rothstein-Trager and Lazard-Rioboo-Trager. We also study the algorithm of Rioboo for conversion of logarithms involving complex extensions into real arctangent functions, when these logarithms arise from the integration of rational functions with real coefficients. We conclude presenting pseudocodes and codes for implementation in the software Maxima concerning the algorithms studied in this work, as well as to algorithms for polynomial gcd computation; partial fraction decomposition; squarefree factorization; subresultant computation, among other side algorithms for the work. We also present the algorithm of Zeilberger-Almkvist for integration of hyperexpontential functions, as well as its pseudocode and code for Maxima. As an alternative for the algorithms of Rothstein-Trager and Lazard-Rioboo-Trager, we yet present a code for Benoulli’s algorithm for square-free denominators; and another for Czichowski’s algorithm, although this one is not studied in detail in the present work, due to the theoretical basis necessary to understand it, which is beyond this work’s scope. Several examples are provided in order to illustrate the working of the integration algorithms in this text

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of algorithms for fault location i n transmission lines is directly related to the accuracy of its input data. Thus, fa ctors such as errors in the line parameters, failures in synchronization of oscillographic recor ds and errors in measurements of voltage and current can significantly influence the accurac y of algorithms that use bad data to indicate the fault location. This work presents a new method ology for fault location in transmission lines based on the theory of state estimation in or der to determine the location of faults more accurately by considering realistic systematic erro rs that may be present in measurements of voltage and current. The methodology was implemente d in two stages: pre-fault and post- fault. In the first step, assuming non-synchronized data, the synchronization angle and positive sequence line parameters are estimated, an d in the second, the fault distance is estimated. Besides calculating the most likely faul t distance obtained from measurement errors, the variance associated with the distance f ound is also determined, using the errors theory. This is one of the main contributions of th is work, since, with the proposed algorithm, it is possible to determine a most likely zone of f ault incidence, with approximately 95,45% of confidence. Tests for evaluation and validation of the proposed algorithm were realized from actual records of faults and from simulations of fictitious transmission systems using ATP software. The obtained results are relevant to show that the proposed estimation approach works even adopting realistic variances, c ompatible with real equipments errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great amount of data generated as the result of the automation and process supervision in industry implies in two problems: a big demand of storage in discs and the difficulty in streaming this data through a telecommunications link. The lossy data compression algorithms were born in the 90’s with the goal of solving these problems and, by consequence, industries started to use those algorithms in industrial supervision systems to compress data in real time. These algorithms were projected to eliminate redundant and undesired information in a efficient and simple way. However, those algorithms parameters must be set for each process variable, becoming impracticable to configure this parameters for each variable in case of systems that monitor thousands of them. In that context, this paper propose the algorithm Adaptive Swinging Door Trending that consists in a adaptation of the Swinging Door Trending, as this main parameters are adjusted dynamically by the analysis of the signal tendencies in real time. It’s also proposed a comparative analysis of performance in lossy data compression algorithms applied on time series process variables and dynamometer cards. The algorithms used to compare were the piecewise linear and the transforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O NAVSTAR/GPS (NAVigation System with Timing And Ranging/Global Po- sitioning System), mais conhecido por GPS, _e um sistema de navegacão baseado em sat_elites desenvolvido pelo departamento de defesa norte-americano em meados de 1970. Criado inicialmente para fins militares, o GPS foi adaptado para o uso civil. Para fazer a localização, o receptor precisa fazer a aquisição de sinais dos satélites visíveis. Essa etapa é de extrema importância, pois é responsável pela detecção dos satélites visíveis, calculando suas respectivas frequências e fases iniciais. Esse processo pode demandar bastante tempo de processamento e precisa ser implementado de forma eficiente. Várias técnicas são utilizadas atualmente, mas a maioria delas colocam em conflito questões de projeto tais como, complexidade computacional, tempo de aquisição e recursos computacionais. Objetivando equilibrar essas questões, foi desenvolvido um método que reduz a complexidade do processo de aquisição utilizando algumas estratégias, a saber, redução do efeito doppler, amostras e tamanho do sinal utilizados, além do paralelismo. Essa estratégia é dividida em dois passos, um grosseiro em todo o espaço de busca e um fino apenas na região identificada previamente pela primeira etapa. Devido a busca grosseira, o limiar do algoritmo convencional não era mais aceitável. Nesse sentido, um novo limiar foi estabelecido baseado na variância dos picos de correlação. Inicialmente, é feita uma busca com pouca precisão comparando a variância dos cinco maiores picos de correlação encontrados. Caso a variância ultrapasse um certo limiar, a região de maior pico torna-se candidata à detecção. Por fim, essa região passa por um refinamento para se ter a certeza de detecção. Os resultados mostram que houve uma redução significativa na complexidade e no tempo de execução, sem que tenha sido necessário utilizar algoritmos muito complexos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recentemente diversas técnicas de computação evolucionárias têm sido utilizadas em áreas como estimação de parâmetros de processos dinâmicos lineares e não lineares ou até sujeitos a incertezas. Isso motiva a utilização de algoritmos como o otimizador por nuvem de partículas (PSO) nas referidas áreas do conhecimento. Porém, pouco se sabe sobre a convergência desse algoritmo e, principalmente, as análises e estudos realizados têm se concentrado em resultados experimentais. Por isso, é objetivo deste trabalho propor uma nova estrutura para o PSO que permita analisar melhor a convergência do algoritmo de forma analítica. Para isso, o PSO é reestruturado para assumir uma forma matricial e reformulado como um sistema linear por partes. As partes serão analisadas de forma separada e será proposta a inserção de um fator de esquecimento que garante que a parte mais significativa deste sistema possua autovalores dentro do círculo de raio unitário. Também será realizada a análise da convergência do algoritmo como um todo, utilizando um critério de convergência quase certa, aplicável a sistemas chaveados. Na sequência, serão realizados testes experimentais de maneira a verificar o comportamento dos autovalores após a inserção do fator de esquecimento. Posteriormente, os algoritmos de identificação de parâmetros tradicionais serão combinados com o PSO matricial, de maneira a tornar os resultados da identificação tão bons ou melhores que a identificação apenas com o PSO ou, apenas com os algoritmos tradicionais. Os resultados mostram a convergência das partículas em uma região delimitada e que as funções obtidas após a combinação do algoritmo PSO matricial com os algoritmos convencionais, apresentam maior generalização para o sistema apresentado. As conclusões a que se chega é que a hibridização, apesar de limitar a busca por uma partícula mais apta do PSO, permite um desempenho mínimo para o algoritmo e ainda possibilita melhorar o resultado obtido com os algoritmos tradicionais, permitindo a representação do sistema aproximado em quantidades maiores de frequências.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to propose a hybrid meta-heuristics for the Heterogeneous Fleet Vehicle Routing Problem (HVRP), which is a combinatorial optimization problem NP-hard, and is characterized by the use of a limited fleet consists of different vehicles with different capacities. The hybrid method developed makes use of a memetic algorithm associated with the component optimizer Vocabulary Building. The resulting hybrid meta-heuristic was implemented in the programming language C + + and computational experiments generated good results in relation to meta-heuristic applied in isolation, proving the efficiency of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective in the facility location problem with limited distances is to minimize the sum of distance functions from the facility to the customers, but with a limit on each distance, after which the corresponding function becomes constant. The problem has applications in situations where the service provided by the facility is insensitive after a given threshold distance (eg. fire station location). In this work, we propose a global optimization algorithm for the case in which there are lower and upper limits on the numbers of customers that can be served

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Combinatorial Optimization is a basic area to companies who look for competitive advantages in the diverse productive sectors and the Assimetric Travelling Salesman Problem, which one classifies as one of the most important problems of this area, for being a problem of the NP-hard class and for possessing diverse practical applications, has increased interest of researchers in the development of metaheuristics each more efficient to assist in its resolution, as it is the case of Memetic Algorithms, which is a evolutionary algorithms that it is used of the genetic operation in combination with a local search procedure. This work explores the technique of Viral Infection in one Memetic Algorithms where the infection substitutes the mutation operator for obtaining a fast evolution or extinguishing of species (KANOH et al, 1996) providing a form of acceleration and improvement of the solution . For this it developed four variants of Viral Infection applied in the Memetic Algorithms for resolution of the Assimetric Travelling Salesman Problem where the agent and the virus pass for a symbiosis process which favored the attainment of a hybrid evolutionary algorithms and computational viable