60 resultados para Cromatografia.Antioxidante
Resumo:
The use of plants for medicinal purposes is ancient, with widespread application in medicinal drugs. Although plants are promising sources for the discovery of new molecules of pharmacological interest, estimates show that only 17% of them have been studied for their possible use in medicine. Thus, biodiversity of Brazilian flora represents an immense potential for economic use by the pharmaceutical industry. The plant Arrabidaea chica, popularly known as “pariri”, is common in the Amazon region, and it is assigned several medicinal properties. The leaves of this plant are rich in anthocyanins, which are phenolic compounds with high antioxidant power. Antioxidant compounds play a vital role in the prevention of neurological and cardiovascular diseases, cancer and diabetes, among others. Within the anthocyanins found in Arrabidaea chica, stands out Carajurin (6,7-dihydroxy-5,4’- dimethoxy-flavilium), which is the major pigment encountered in this plant. The present work aimed to study on supercritical extraction and conventional extraction (solid-liquid extraction) in leaves of Arrabidaea chica, evaluating the efficiency of the extractive processes, antioxidant activity and quantification of Carajurin contained in the extracts. Supercritical extraction used CO2 as solvent with addition of co-solvent (ethanol/water mixture) and were conducted by the dynamic method in a fixed bed extractor. The trials followed a 24-1 fractional factorial design, the dependent variables were: process yield, concentration of Carajurin and antioxidant activity; and independent variables were: pressure, temperature, concentration of co-solvent (v/v) and concentration of water in the co-solvent mixture (v/v). Yields (mass of dry extract/mass of raw material used) obtained from supercritical extraction ranged from 15.1% to 32%, and the best result was obtained at 250 bar and 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 50%. Through statistical analysis, it was found that the concentration of co-solvent revealed significant effect on the yield. Yields obtained from conventional extractions were of 8.1% (water) and 5.5% (ethanol). Through HPLC (High-performance liquid chromatography) analysis, Carajurin was quantified in all the extracts and concentration values (Carajurin mass/mass of dry extract) ranged between 1% and 2.21% for supercritical extraction. For conventional extraction, Carajurin was not detected in the aqueous extract, while the ethanol extract showed Carajurin content of 7.04%, and therefore, more selective in Carajurin than the supercritical extraction. Evaluation of antioxidant power (radical 2,2-diphenyl-1-picrylhydrazyl – DPPH – sequestration method) of the supercritical extracts resulted in EC50 values (effective concentration which neutralizes 50% of free radicals) ranged from 38.34 to 86.13 μg/mL, while conventional extraction resulted in EC50 values of 167.34 (water) and 42.58 (ethanol) μg/mL. As for the quantification of total phenolic content (Folin-Ciocalteau analysis) of the supercritical extracts resulted in values ranged from 48.93 and 88.62 mg GAE/g extract (GAE = Gallic Acid Equivalents), while solid-liquid extraction resulted in values of 37.63 (water) and 80.54 (ethanol) mg GAE/g extract. The good antioxidant activity cannot be attributed solely to the presence of Carajurin, but also the existence of other compounds and antioxidants in Arrabidaea chica. By optimizing the experimental design, it was possible to identify the experiment that presented the best result considering the four dependent variables together. This experiment was performed under the following conditions: pressure of 200 bar, temperature of 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 30%. It is concluded that, within the studied range, it is possible to purchase the optimum result using milder operating conditions, which implies lower costs and greater ease of operation.
Resumo:
Glucans are polysaccharides with different pharmacological and biological activities described. However, there are some reports about the activities of the glucan type α (alpha). In this context, a group of α-D-glucans called dextrans extracted from Leuconostoc mesenteroides bacteria, with molecular weights of 10 (D10), 40 (D40) and 147 (D147) kDa and their phosphorylated derivatives P10, P40 and P147, were evaluated as for their antioxidant, anticoagulant and immunomodulatory potential for the first time, in order to elucidate compounds with potent activities and low toxicity. Infrared spectroscopy analysis, monosaccharide composition and chemical dosages showed that these dextrans are the same polysaccharide, but with different molecular weights, besides confirming the success of phosphorylation. None presented with anticoagulant features. The reducing power test showed that D147 was twice as potent as other dextrans. On the other hand, all six samples showed similar activity (50%) when it came to scavenging the OH radical. To the superoxide ion scavenging, only D10 had a pronounced activity (50%). D40 was the single native dextran that presented with immunomodulatory features since it double stimulated the proliferation of murine macrophages (RAW 264.7) and double the release of nitric oxide by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). On other hand, P147 showed the highest iron and copper ion chelation activity (~85%). P10 proved be the most effective compound to macrophage proliferation. The results point toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use, could be supplemented with phosphorylated derivatives. However, future studies with the D40 and other similarly dextrans are to confirm this hypothesis.
Resumo:
Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.
Resumo:
Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.
Resumo:
Introduction: Licania rigida Benth and Turnera ulmifolia Linn. var. elegans are species of semi-arid regional plants used in the treatment of various diseases. Objectives: The purpose of this study was chemically characterize the extracts and fractions and investigate the antimicrobial and antioxidant potential. Methods: For chemical analysis, were performed spectrophotometric quantification of the total phenolic and characterization of the extracts by chromatographic analysis. Evaluation of antioxidant activity was done by determining the radical scavenging capacity DPPH •. Antimicrobial activity was evaluated by agar diffusion, broth microdilutionand time-kill assays. Results: The extracts and fractions L. rigid and T. ulmifolia showed a high phenolic content, the presence of flavonoids, which were determined as chemical markers. It was observed that the extracts of both species performed as sequestering agents in the trial of antioxidant activity in vitro. The L. rigida extract was the only active front strains of S. aureus 33591 (methicillin-resistant), S. aureus 29213, S. epidermidis 12228, and also against the yeast, Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Candida rugosa, Candida krusei eTrichosporon asahii. Conclusions: Based on these results it is possibly affirm the antioxidant and antimicrobial activity of L. rigida and attributed the presence of polyphenolic flavonoid like responsible.
Resumo:
Studies made with polysaccharides of seaweed have demonstrated that these present important biological and pharmacological activities. These composites had presented "scavenging" activity of free radicals, which is important in the mediation of the inflammatory process and in the pathology of diverse disease. Recently, this "scavenging" property has taken some researches to evaluate the antioxidant capacity from various polysaccharides. Considering the limited research with polysaccharides and knowing its largely employed by the pharmaceutical and foodstuffs industries, we have objective to verify the actions from fucans and galactans as antioxidants. The fucans are found in brown seaweed and the galactans (carrageenans) in red seaweed. The fucans were obtained from seaweed Padina gymnospora (F0.5 e F1.1 fractions), common to our coastline and one another fucan, fucoidan, was of origin commercial and extracted from seaweed Fucus vesiculosus. The λ, κ e ι carrageenans were also of origin commercial. The antioxidant activities were tested in superoxide and hydroxyl systems to generated free radicals and for the inhibition of the lipid peroxidation. The results obtained to inhibition of formation the superoxide radicals demonstrated that all polysaccharides presented scavenging activity of superoxide radicals. The fucoidan, F0.5 and F1.1 fractions presented IC50 of 0.058; 0.243 and 0.243 mg/mL, respectively, while IC50 of the λ, κ and ι carrageenans were 0.046; 0.112 and 0.332 mg/mL, respectively. The results to inhibition of formation the hydroxyl radicals demonstrated that all sample had low effect in the inhibition of the formation of these radicals, except the F0.5. For these radicals the IC50 were 0.157 and 0.353 mg/mL to the fucoidan and F1.1, respectively and 0.357; 0.335 and 0.281 mg/mL to λ, κ and ι carrageenans, respectively. All the samples were capacity to inhibition the peroxidation, it present the IC50 of 1.250; 2.753 and 2.341 mg/mL to fucoidan, F0.5 and F1.1, respectively. Already the λ, κ and ι carrageenans presented the IC50 of 2.697; 0.323 and 0.830 mg/mL, respectively. With these findings, we conclude that polysaccharides used in this study presented activity antioxidant, and that fucoidan and the λ carrageenan show a significant "scavenging" activity for the radicals superoxide and the κ carrageenan a significant inhibitory activity for the lipid peroxidation
Resumo:
Polymers of mushroom cellular wall are recognized for presenting a lot of biological activities such as anti-inflammatory, antioxidant and anti-tumoral action. Polysaccharides from mushrooms of different molecular mass obtained mushrooms can activate leucocytes, stimulate fagocitic, citotoxic and antimicrobial activity including oxygen reactive species production. In this study were investigated chemical characteristics, in vitro antioxidant activity and anti-inflammatory action in an acute inflammation model of the polysaccharides extracted from Tylopilus ballouii. Results showed that were mainly extracted polysaccharides and that it primarily consisted of mannose and galactose with variable amounts of xylose and fucose. Infrared analysis showed a possible interation between this polysaccharides and proteins. In addition, molecular mass was about 140KDa. Antioxidant activity was tested by superoxide and hydroxyl radical scavenging assay, total antioxidant activity and lipid peroxidation assay. For superoxide and hydroxyl radical generation inhibition, polysaccharides have an IC50 of 2.36 and 0.36 mg/mL, respectively. Lipid peroxidation assay results showed that polysaccharides from Tylopilus ballouii present an IC50 of 3.42 mg/mL. Futhermore, anti-inflammatory assay showed that polysaccharides cause an paw edema decreasing in 32.8, 42 and 56% in 30, 50 and 70 mg/Kg dose, respectively. Thus, these results can indicate a possible use for these polysaccharides from Tylopilus ballouii as an anti-inflammatory and antioxidant.
Resumo:
The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
In the present study, extracts rich-sulfated polysaccharides were obtained from three different species of Dictyotales (a class of brown macroalgae): Canistrocarpus cervicornis, Dictyota mertensii and Dictyopteris delicatula and their anticoagulant and antioxidant activities were evaluated. All extracts showed anticoagulant activity on aPTT assay, but not on PT assay. Extracts also exhibited total antioxidant activity, superoxide radical scavenging capacity and ferric chelating property. The extract from C. cervicornis showed the best results and was choose to have their sulfated polysaccharides fractioned and subsequently analysed. Thus, six fractions (CC-0.3, CC-0.5, CC-0.7, CC-1.0, CC-1.2 and CC-2.0) were obtained by proteolysis followed by sequential acetone precipitation. Agarose gel eletrophoresis stained with blue toluidine, confirmed the presence of sulfated polysaccharides in all fractions. Chemical analyses showed that all fractions presented heterofucans mainly constitued by fucose, galactose, glucuronic acid and sulfate. Any fraction changed the PT. However, all fractions were able to double the aPTT on a dose-dependent manner. CC- 0.3, CC-0.5, CC-0.7 and CC-1.0 needed only 0.100 mg/mL to double the aPTT, result only 1.25 times higher than the Clexane® (0.080 mg/mL), a commercial low molecular heparin. The heterofucans presented appreciable total antioxidant capacity, low capacity on scavenging hydroxyl radical and good efficiency on scavenging superoxide radicals (except CC-1.0). CC-1.2 showed 43.1 % on superoxide radical scavenging. This result was higher than that showed by the same concentration of gallic acid (41.8 %), a known antioxidant. Furthermore, the heterofucans showed excelent activity on ferrous chelating activity (except CC-0.3). CC-0.5, CC-0.7 and CC-1.0 showed the highest activities with 47.0 % of ferrous chelating activity, a result 2.0 times lesser than that exhibited by the same concentration of EDTA. These results clearly indicated the beneficial effects of heterofucans extracted from C. cervicornis as potential anticoagulant and antioxidant agents. However additional steps of purification, structural studies, besides in vivo experiments are needed for these fucans may be used as therapeutic agents
Resumo:
The species of the genus Marsdenia, Apocynaceae, are widely used in folk medicine of several countries. In Brazil is found several species belonging to this genus. The in vitro antioxidant, anticoagulant and antiproliferative activities were evaluated to aqueous extracts of stalk, leaf and root of Marsdenia megalantha. In the total antioxidant capacity assay (expressed as ascorbic acid equivalents) the stalk extract showed 76.0 mg/g, while leaf and root extracts 141.3 mg/g and 57.0 mg/g, respectively. The stalk and leaf extracts showed chelating activity around 40% at 1.5 mg/mL, while root extract, at the same concentration showed, 17%. Only the leaf extract showed a significant ability in superoxide scavenging (80% at 0.8 mg/mL). Any extract was able in scavenge hydroxyl, as well anticoagulant activity. The antiproliferative activity of the extracts was evaluated against HeLa tumor cell line. The extracts inhibited in a dose-dependent manner the cell growth. However, the leaf extract showed 80% of inhibition at 1.0 mg/mL, while stalk and root extracts inhibited 63% and 30%, respectively. To assess the mechanism of cell death caused by the leaf extract in HeLa, was performed flow cytometry and western blot. The results show that leaf extract induces cell death by apoptosis through an activation caspase-independent pathway. These data indicate that stalk and leaf extracts obtained have potential to be used as antioxidants and anticancer drugs
Resumo:
Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.
Resumo:
This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
Since the beginning of the National Program for Production and Use of Biodiesel in Brazil, in 2004, different raw materials were evaluated for biodiesel production, trying to combine the agricultural diversity of the country to the desire to reduce production coasts. To determine the chemical composition of biodiesel produced from common vegetables oils, international methods have been used widely in Brazil. However, for analyzing biodiesel samples produced from some alternative raw materials analytical problems have been detected. That was the case of biodiesel from castor oil. Due the need to overcome these problems, new methodologies were developed using different chromatographic columns, standards and quantitative methods. The priority was simplifying the equipment configuration, realizing faster analyses, reducing the costs and facilitating the routine of biodiesel research and production laboratories. For quantifying free glycerin, the ethylene glycol was used in instead of 1,2,4-butanetriol, without loss of quality results. The ethylene glycol is a cheaper and easier standard. For methanol analyses the headspace was not used and the cost of the equipment used was lower. A detailed determination of the esters helped the deeper knowledge of the biodiesel composition. The report of the experiments and conclusions of the research that resulted in the development of alternative methods for quality control of the composition of the biodiesel produced in Brazil, a country with considerable variability of species in agriculture, are the goals of this thesis and are reported in the following pages