47 resultados para Coeficiente Alfa de Cronbach
Resumo:
The vitamins A and E are recognizably important in the initial stages of life and the newborn depends on nutritional adequacy of breast milk to meet their needs. These vitamins share routes of transport to the tissues and antagonistic effects have been observed in animals after supplementation with vitamin A. This study aimed to verify the effect of maternal supplementation with vitamin A megadose (200,000 UI) in the immediate post-partum on the concentration of alpha-tocopherol in colostrum. Healthy parturient women attended at a public maternity natalensis were recruited for the study and divided into two groups: control (n = 37) and supplemented (n = 36). Blood samples of colostrum and milk were collected until 12 hours after delivery. The women of the supplemented group was administered a retynil palmitate capsule and 24 hours after the first collection was obtained the 2nd sample of colostrum in two groups for analysis of retinol and alpha-tocopherol in milk. The mean retinol concentration of 50,7 ± 14,4 μg/dL (Mean ± standard deviation) and alpha-tocopherol of 1217.4 ± 959 mg/dL in the serum indicate the nutritional status biochemical appropriate. Supplementation with retynil palmitate resulted in increase not only retinol levels in the colostrum of the supplemented group (p = 0.002), but also the concentration of alpha-tocopherol (p = 0.04), changing from 1456.6 ± 1095.8 mg/dL to 1804.3 ± 1432.0 mg/dL (milk 0 and 24 respectively) compared to values in the control group, 984.6 ± 750.0 mg/dL and 1175.0 ± 730.8 mg/dL. The women had different responses to supplementation, influenced by baseline levels of retinol in colostrum. Those with previous by low levels of retinol in colostrum (<60 mg/dL) had increased the concentration of alpha-tocopherol in milk, whereas those with adequate levels (> 60 mg/dL), showed a reduction after supplementation. Supplementation with retinol palmitate is an important intervention in situations of high risk for vitamin A deficiency, when considering the need to maternal supplementation, since the excess vitamin can offer unfavorable interactions between nutrients essential for the mother-child group
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.