324 resultados para Cimentação de poços


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lightweight oilwell cement slurries have been recently studied as a mean to improve zonal isolation and sheath-porous formation adherence. Foamed slurries consisting of Portland cement and air-entraining admixtures have become an interesting option for this application. The loss in hydrostatic pressure as a consequence of cement hydration results in the expansion of the air bubbles entrapped in the cement matrix, thus improving the sheath-porous formation contact. Consequently, slurries are able to better retain their water to complete the hydration process. The main objective of the present study was to evaluate the effect of the addition of an air-entraining admixture on the density, stability and permeability of composite slurries containing Portland cement and diatomite as light mineral load. Successful formulations are potential cementing materials for low fracture gradient oilwells. The experimental procedures used for slurry preparation and characterization were based on the American Petroleum Institute and ABNT guidelines Slurries containing a pre-established concentration of the air-entraining admixture and different contents of diatomite were prepared aiming at final densities of 13 to 15 lb/gal. The results revealed that the reduction of 15 to 25% of the density of the slurries did not significantly affect their strength. The addition of both diatomite and the air-entraining admixture increased the viscosity of the slurry providing better air-bubble retention in the volume of the slurry. Stable slurries depicted bottom to top density variation of less than 1.0 lb/gal and length reduction of the stability sample of 5.86 mm. Finally, permeability coefficient values between 0.617 and 0.406 mD were obtained. Therefore, lightweight oilwell cement slurries depicting a satisfactory set of physicochemical and mechanical properties can be formulated using a combination of diatomite and air-entraining admixtures for low fracture gradient oilwells

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oil wells cementing is a critical step during the phase of well drilling, because problems during the operation of slurry pumping and an incomplete filling of the annular space between the metal casing and the formation can cause the slurry loss. Therefore, the slurry adopted in primary cementing an oil well must be properly dosed so that these problems are avoided during its pumping. When you drill a well in a weak rock formation requires even more careful, because should be a limit of hydrostatic pressure exerted during cementation, that does not occur rock collapse. With the objective of performing the cementing of a well whose formation is weak or unconsolidated are employed lighter slurries. Thus, this study used slurries with sodium silicate and nano silica in concentrations of 0,1; 0,4; 0,7 e 1,0 gpc, in which the slurries with nano silica showed the rheological parameters higher concentrations of up to 0.7 gpc and for concentration of 1.0 the slurry with sodium silicate obtained the highest values, remaining above the limits for application in fields, mainly wells with low fracture gradient, because a significant increase in viscosity may result in an increase in pressure pumping in operations of secondary cementations. Furthermore, there was no decrease in strength with increasing concentration of additive. Then, it is possible use of these additives to formulate Lighter slurry

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pastas a base de cimento Portland são utilizadas na cimentação de poços de petróleo. Elas consistem de uma mistura de partículas sólidas de cimento dispersas em água e aditivos. Atualmente, diversos materiais alternativos são utilizados como aditivos, objetivando a modificação e a melhoria das propriedades das pastas de cimento, especialmente no aumento da fluidez. Novos aditivos plastificantes são capazes de suportar as diversas condições de poços, promovendo propriedades no estado fluido compatíveis às condições exigidas para cimentação.Dispersantes são os componentes da pasta que garantem fluidez, além de proporcionar controle na água perdida por filtração na formação porosa, garantindo o sucesso da operação de bombeio. Em deter minados campos, além do efeito da profundidade, as condições geológicas das formações promovemvariações do gradiente de pressão e temperatura ao longo da profundidade vertical do poço. Recentemente, diversos aditivos químicos da indústria da construção civil tem sido estudados em condições de cimentação de poços de petróleo. Vários produtos testados tem apresentado desempenho superior aos produtos normalmente empregados pela indústria de petróleo com boa relação custo/benefício em função do volume de mercado da construção civil. Resultados promissores na seleção de aditivos com função dispersante da construção civil para operações de cimentação de poços de petróleo onshore foram obtidos para temperaturas até 80°C. O potencial de uso desses aditivos permite estabelecer novas soluções para problemas encontrados na cimentação de poços de petróleo HPHT, poços sujeitos à injeção de vapor, poços depletados e poços produtores de gás. Na construção civil, os superplastificantes permitem reduzir o fator água/cimento das argamassas proporcionando melhoria de propriedades como resistência mecânica e fluidez. Assim, o objetivo deste trabalho foi o estudo e a caracterização reológica de pastas constituídas de cimento Portland, água e aditivos do tipo plastificante, com função dispersante a base de naftaleno condensado e policarboxilato, na faixa de temperaturas de 58°C e 70ºC. As condições utilizadas para a avaliação dos aditivos alternativos foram baseadas em uma cimentação primária para um poço hipotético de 2200 m de profundidade e gradientes geotérmicos de 1,7°F/100 pés e 2,1°F/100 pés. Os resultados demonstraram a grande eficiência e o poder dispersivo do policarboxilato para as temperaturas estudadas. O aditivo promoveu alta fluidez, sem efeitos de sedimentação da pasta. O dispersante à base de naftaleno reduziutant o a viscosidade plástica como o limite de escoamento acimada concentração a partir de 0,13%. O modelo de Bingham descreveu bem o comportamento reológico das pastas com policarboxilato para todas as concentrações

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The improved performance of hydraulic binders, the base of Portland cement, consists in the careful selection and application of materials that promote greater durability and reduced maintenance costs There is a wide variety of chemical additives used in Portland cement slurries for cementing oil wells. These are designed to work in temperatures below 0 ° C (frozen areas of land) to 300 ° C (thermal recovery wells and geothermal); pressure ranges near ambient pressure (in shallow wells) to greater than 200 MPa (in deep wells). Thus, additives make possible the adaptation of the cement slurries for application under various conditions. Among the materials used in Portland cement slurry, for oil wells, the materials with nanometer scale have been applied with good results. The nanossílica, formed by a dispersion of SiO2 particles, in the nanometer scale, when used in cement systems improves the plastic characteristics and mechanical properties of the hardened material. This dispersion is used commercially as filler material, modifier of rheological properties and / or in recovery processes construction. It is also used in many product formulations such as paints, plastics, synthetic rubbers, adhesives, sealants and insulating materials Based on the above, this study aims to evaluate the performance of nanossílica as extender additive and improver of the performance of cement slurries subjected to low temperatures (5 ° C ± 3 ° C) for application to early stages of marine oil wells. Cement slurries were formulated, with densities 11.0;12.0 and 13.0 ppg, and concentrations of 0; 0.5, 1.0 and 1.5%. The cement slurries were subjected to cold temperatures (5 ° C ± 3 ° C), and its evaluation performed by tests rheological stability, free water and compressive strength in accordance with the procedures set by API SPEC 10A. Thermal characterization tests (TG / DTA) and crystallographic (XRD) were also performed. The use of nanossílica promoted reduction of 30% of the volume of free water and increased compression resistance value of 54.2% with respect to the default cement slurry. Therefore, nanossílica presented as a promising material for use in cement slurries used in the early stages of low-temperature oil wells

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Compatibility testing between a drilling fluid and a cement slurry is one of the steps before an operation of cementing oil wells. This test allows us to evaluate the main effects that contamination of these two fluids may cause the technological properties of a cement paste. The interactions between cement paste and drilling fluid, because its different chemical compositions, may affect the cement hydration reactions, damaging the cementing operation. Thus, we carried out the study of the compatibility of non-aqueous drilling fluid and a cement slurry additives. The preparation procedures of the non-aqueous drilling fluid, the cement paste and completion of compatibility testing were performed as set out by the oil industry standards. In the compatibility test is evaluated rheological properties, thickening time, stability and compressive strength of cement pastes. We also conducted analyzes of scanning electron microscopy and X-ray diffraction of the mixture obtained by the compatibility test to determine the microstructural changes in cement pastes. The compatibility test showed no visual changes in the properties of the cement paste, as phase separation. However, after the addition of nonaqueous drilling fluid to cement slurry there was an increased amount of plastic viscosity, the yield point and gel strength. Among the major causative factors can include: chemical reaction of the components present in the non-aqueous drilling fluid as the primary emulsifier, wetting agent and paraffin oil, with the chemical constituents of the cement. There was a reduction in the compressive strength of the cement paste after mixing with this drilling fluid. Thickening test showed that the oil wetting agent and high salinity of the non-aqueous fluid have accelerating action of the handle of the cement paste time. The stability of the cement paste is impaired to the extent that there is increased contamination of the cement slurry with the nonaqueous fluid. The X-ray diffraction identified the formation of portlandite and calcium silicate in contaminated samples. The scanning electron microscopy confirmed the development of the identified structures in the X-ray diffraction and also found the presence of wells in the cured cement paste. The latter, formed by the emulsion stability of the drilling fluid in the cement paste, corroborate the reduction of mechanical strength. The oil wetting agent component of the non-aqueous drilling fluid, the modified cement hydration processes, mainly affecting the setting time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.