85 resultados para Calor.
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging
Resumo:
The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.
Resumo:
The use of waste heat of energy conversion equipment to produce a cooling effect, consists currently in a very interesting way of efficiency improvement of energy systems. The present research has as intention the theoretical and experimental study of a new intermittent refrigeration system ejector cycle characteristics, with use of waste heat. Initially, was doing a bibliographical survey about the vapor ejector refrigeration system technology. In the following stage was doing a simulation of the corresponding thermodynamic cycle, with preliminarily intention to evaluate the performance of the system for different refrigerants fluids. On the basis of the results of the simulation were selected the refrigerant fluid and developed an experimental group of benches of the refrigeration system considered, where pressure and temperature sensory had been inserted in strategical points of the refrigeration archetype and connected to a computerized data acquisition system for measure the refrigerant fluid properties in the thermodynamic cycle. The test results obtained show good agreement with the literature
Resumo:
In the industry of ceramic in Rio G. do Norte, tile stands out as the most manufactured product by this industry, being the intermittent kiln abóbada and caieira the principal type of kiln used in burning. There was a need to make a study of the influence exerted by the type of kiln in which tiles are burnt in their thermo physical properties. The analysis started with 24 raw samples of tile, which was split in two groups of 12 samples and burnt in Abóbada and Caieira kiln. Besides that, it was made study of the tax of heat transfer to the environment (for each kiln). After having been burnt the samples were taken for laboratory analysis. The properties verified were impermeability, determination of dry mass, absorption of water, the load of bending rupture and its geometric characteristics, the tests were conducted following the currents standards. The tests were carried out according to the ABNT - NBR 15310. The calculation of the rate of heat transfer showed that the abóbada kiln is more efficient than the Caieira, however the results of tests on the samples revealed no superiority of one over another sample. So the furnace had no influence on the performance of the ceramic tiles
Resumo:
Given the growing environmental crisis caused by degradation, mainly due to the use of polluting energy sources, increasing the growing use of renewable energies worldwide, with emphasis on solar energy, an abundant supply and available to everyone, which can be harnessed in several ways: electricity generation; dehydration of food; heating, disinfection and distillation and cooking. The latter has as its primary feature the viability of clean, renewable energy for society, combating ecological damage caused by large-scale use of firewood for cooking foods, use in tropical countries with high solar radiation, and has funding NGOs throughout the world with the goal of achieving low-income population. The proposed project consists of a solar cooker for concentration, working from the reflection of sunlight by a hub that they converge to a focal point at the bottom of the pot, getting lots of heat. The solar cooker under study consists of two elliptical reflecting parabolas made from the recycling of scrap TV antenna, having 0.29 m² of surface area for each antenna, which were covered by multiple mirrors of 2 mm thick and mounted on a metal structure, with correction for the mobility of the apparent movement of the sun. This structure was built with the recycling of scrap metal, possessing a relatively low cost compared with other solar cookers, around US$ 50.00. This cost becomes negligible, since that will involve a great benefit to not have fuel costs for each meal, unlike the use of gas or firewood for cooking food. The tests show that the cooker has reached the maximum temperature of 740 ° C, for boiling water in an average time of 28 minutes, cooking various types of foods such as potatoes, rice and pasta in an average time of 45 minutes and still going as a solar oven, making pizza baking and meat. These cooking times do not differ much from the cooking times on a gas stove, it becomes the solar cooker as a good consumer acceptance, and furthermore not to deliver the same gases that can poison the food as with the wood stove. Proves the viability of using the stove to cook or bake in two daily meals for a family, still presenting a position to improve his performance with the addition of new materials, equipment and techniques
Resumo:
The aluminothermic reduction consists in an exothermic reaction between a metallic oxide and aluminum to produce the metal and the scum. The extracted melted metal of that reaction usually comes mixed with particles of Al2O3 resulting of the reduction, needing of subsequent refine to eliminate the residual impure as well as to eliminate porosities. Seeking to obtain a product in powder form with nanometric size or even submicrometric, the conventional heat source of the reaction aluminothermic , where a resistor is used (ignitor) as ignition source was substituted, for the plasma, that acts more efficient way in each particle of the sample. In that work it was used as metallic oxide the niobium pentoxide (Nb2O5) for the exothermal reaction Nb2O5 + Al. Amounts stoichiometric, substoichiometric and superestoichiometric of aluminum were used. The Nb2O5 powder was mixed with aluminum powder and milled in planetarium of high energy for a period of 6 hours. Those powders were immerged in plasm that acts in a punctual way in each particle, transfering heat, so that the reaction can be initiate and spread integrally for the whole volume of the particle. The mixture of Nb2O5 + Al was characterized through the particle size analysis by laser and X-ray diffraction (DRX) and the obtained product of reaction was characterized using the electronic microscopy of sweeping (MEV) and the formed phases were analyzed by DRX. Niobium powders with inferior sizes to 1 mm were obtained by that method. It is noticed, through the analysis of the obtained results, that is possible to accomplish the aluminothermic reduction process by plasma ignition with final particles with inferior sizes to the original oxide
Resumo:
This work presents an optimization technique based on structural topology optimization methods, TOM, designed to solve problems of thermoelasticity 3D. The presented approach is based on the adjoint method of sensitivity analysis unified design and is intended to loosely coupled thermomechanical problems. The technique makes use of analytical expressions of sensitivities, enabling a reduction in the computational cost through the use of a coupled field adjoint equation, defined in terms the of temperature and displacement fields. The TOM used is based on the material aproach. Thus, to make the domain is composed of a continuous distribution of material, enabling the use of classical models in nonlinear programming optimization problem, the microstructure is considered as a porous medium and its constitutive equation is a function only of the homogenized relative density of the material. In this approach, the actual properties of materials with intermediate densities are penalized based on an artificial microstructure model based on the SIMP (Solid Isotropic Material with Penalty). To circumvent problems chessboard and reduce dependence on layout in relation to the final optimal initial mesh, caused by problems of numerical instability, restrictions on components of the gradient of relative densities were applied. The optimization problem is solved by applying the augmented Lagrangian method, the solution being obtained by applying the finite element method of Galerkin, the process of approximation using the finite element Tetra4. This element has the ability to interpolate both the relative density and the displacement components and temperature. As for the definition of the problem, the heat load is assumed in steady state, i.e., the effects of conduction and convection of heat does not vary with time. The mechanical load is assumed static and distributed
Resumo:
Fuel is a material used to produce heat or power by burning, and lubricity is the capacity for reducing friction. The aim of this work is evaluate the lubricity of eight fossil and renewable fuels used in Diesel engines, by means of a HFRR tester, following the ASTM D 6079-04 Standard. In this conception, a sphere of AISI 52100 steel (diameter of 6,000,05 mm, Ra 0,050,005 μm, E = 210 GPa, HRC 624, HV0,2 63147) is submitted to a reciprocating motion under a normal load of 2 N and 50 Hz frequency to promote a wear track length of 1.10.1mm in a plan disc of AISI 52100 steel (HV0,05 18410, Ra 0,020,005 μm). The testing extent time was 75 minutes, 225,000 cycles. Each one test was repeated six times to furnish the results, by means of intrinsic signatures from the signals of the lubricant film percentage, friction coefficient, contact heating, Sound Pressure Level, SPL [dB]. These signal signatures were obtained by two thermocouples and a portable decibelmeter coupled to a data acquisition system and to the HFRR system. The wettability of droplet of the diesel fuel in thermal equilibrium on a horizontal surface of a virgin plan disc of 52100 steel, Ra 0,02 0,005 μm, were measured by its contact angle of 7,0 3,5o, while the results obtained for the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of soybean oil were, respectively, 7,5 3,5o, 13,5 3,5o e 19,0 1,0o; for the distilled water, 78,0 6,0o; the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of sunflower oil were, respectively, 7,0 4,0o, 8,5 4,5o e 19,5 2,5o. Different thickness of lubricant film were formed and measured by their percentage by means of the contact resistance technique, suggesting several regimes, since the boundary until the hydrodynamic lubrication. All oils analyzed in this study promoted the ball wear scars with diameters smaller than 400 μm. The lowest values were observed in the scar balls lubricated by mixtures B100, B20 and B5 of sunflower and B20 and B5 of soybean oils (WSD < 215 μm)
Resumo:
Currently there is still a high demand for quality control in manufacturing processes of mechanical parts. This keeps alive the need for the inspection activity of final products ranging from dimensional analysis to chemical composition of products. Usually this task may be done through various nondestructive and destructive methods that ensure the integrity of the parts. The result generated by these modern inspection tools ends up not being able to geometrically define the real damage and, therefore, cannot be properly displayed on a computing environment screen. Virtual 3D visualization may help identify damage that would hardly be detected by any other methods. One may find some commercial softwares that seek to address the stages of a design and simulation of mechanical parts in order to predict possible damages trying to diminish potential undesirable events. However, the challenge of developing softwares capable of integrating the various design activities, product inspection, results of non-destructive testing as well as the simulation of damage still needs the attention of researchers. This was the motivation to conduct a methodological study for implementation of a versatile CAD/CAE computer kernel capable of helping programmers in developing softwares applied to the activities of design and simulation of mechanics parts under stress. In this research it is presented interesting results obtained from the use of the developed kernel showing that it was successfully applied to case studies of design including parts presenting specific geometries, namely: mechanical prostheses, heat exchangers and piping of oil and gas. Finally, the conclusions regarding the experience of merging CAD and CAE theories to develop the kernel, so as to result in a tool adaptable to various applications of the metalworking industry are presented
Resumo:
Due to the increasing need to promote the use of resources that support the environment and the clean industry, the science has developed in the area of natural resource use as well as enhanced use of the renewable energy sources. Considering also the great need for clean water and wide availability of salt or brackish water, added to the great solar energy potential in northeastern of the Brazil, it was developed a solar distiller whose main difference is its system of pre-solar heating also. From experimental adjustments, the system was developed by the use of a cylindrical solar concentrator coupled to a conventional distiller. The system is designed such that attempt to facilitate the process termination trap to ensure constant movement of the fluid mass and thus enable higher temperatures to the system and thus fetch a higher amount of distillate collected. In a stage of the experiment were used a forced circulation to try to further increase the amount of energy exchange system. To develop the study were set up four settings for comparison in which one was only distiller simple as basic parameter, the second proposed configuration were with the coupling of the concentration triggered manually every 30 minutes to monitor the sun, the third configuration occurred with automatic triggering of a timer, and the fourth configuration was also used a pumping system that tried to improve the circulation of the fluid. With the comparative analysis of the results showed a gain in the amount of distillate system, especially in the forced model
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Lubricant is responsible for reducing the wear on the friction protect the metal against oxidation, corrosion and dissipates excess heat, making it essential for the balance of a mechanical system, consequently prolonging the useful life of such a system. The origin of lubricating oils is usually mineral being extracted from the petroleum. But the search for a new source of production of lubricants and fuels it is necessary to meet future demands and reduce the possible environmental damage. For this reason, looking alternative means to produce certain products derived from petroleum, such as biodiesel, for example. Returning to the realm of lubricants, also one realizes this need for new raw materials for their production. Vegetable oil is a renewable resource and biodegradable, and its use entails advantages in environmental, social and economic. The development of this project aims to characterize the carnauba oil as a lubricant plant, or biolubricant. To analyze the oil carnauba tests as checking density, flash point, fire point, viscosity, viscosity, acid number, pH, copper corrosion, thermal conductivity and thermal resistivity were developed. In addition, for conducting the wear on the friction and the gradient of the system temperature, the analysis equipment is designed for wear on the friction. Based on these results, it is observed that the oil carnauba show good correlation to its application as biolubricant
Resumo:
Thermal insulation is used to protect the heated or cooled surfaces by the low thermal conductivity materials. The rigid ricin polyurethane foams (PURM) are used for thermal insulation and depend on the type and concentration of blowing agent. Obtaining PURM occurs by the use of polyol, silicone, catalyst and blowing agent are pre -mixed, reacting with the isocyanate. The glass is reusable, returnable and recyclable heat insulating material, whose time of heat dissipation determines the degree of relaxation of its structure; and viscosity determines the conditions for fusion, operating temperatures, annealing, etc. The production of PURM composites with waste glass powder (PV) represents economical and renewable actions of manufacturing of thermal insulating materials. Based on these aspects, the study aimed to produce and characterize the PURM composites with PV, whose the mass percentages were 5, 10, 20, 30, 40 and 50 wt%. PURM was obtained commercially, while the PV was recycled from the tailings of the stoning process of a glassmaking; when the refining process was applied to obtain micrometer particles. The PURM + PV composites were studied taking into account the standard sample of pure PURM and the influence of the percentage of PV in this PURM matrix. The results of the chemical, physical and morphological characterization were discussed taking into account the difference in the microstructural morphology of the PURM+PV composites and the pure PURM, as well the results of the physicochemical, mechanical e thermophysical tests by values obtained of density, hardness, compressive strength, specific heat, thermal conductivity and diffusivity. In general, the structure of pure PURM showed large, elongated and regular pores, while PURM+PV composites showed irregular, small and rounded pores with shapeless cells. This may have contributed to reducing their mechanical strength, especially for PURM - PV50. The hardness and density were found to have a proportional relationship with the PV content on PURM matrix. The specific heat, thermal diffusivity and thermal conductivity showed proportional relationship to each other. So, this has been realized that the increasing the PV content on PURM matrix resulted in the rise of diffusivity and thermal conductivity and the decrease of the specific heat. However, the values obtained by the PURM composites were similar the values of pure PURM, mainly the PURM-PV5 and PURM-PV10. Therefore, these composites can be applied like thermal insulator; furthermore, their use could reduce the production costs and to preserve the environment
Resumo:
The present work presents a contribution in the study of modelings of transference of heat for foods submitted to the experimental tests in the considered solar oven, where the best modeling for the beefburger of chicken in study was evaluated, comparing the results, considering this food as a half-infinite(1er object considered model) and,after that, considered the chicken beefburger as a plain plate in transient regimen in two distinct conditions: not considering and another model considering the contribution of the generation term, through the Criterion of Pomerantsev. The Sun, beyond life source, is the origin of all the energy forms that the man comes using during its history and can be the reply for the question of the energy supplying in the future, a time that learns to use to advantage in rational way the light that this star constantly special tax on our planet. Shining more than the 5 billion years, it is calculated that the Sun still in them will privilege for others 6 billion years, or either, it is only in the half of its existence and will launch on the Earth, only in this year, 4000 times more energy that we will consume. Front to this reality, would be irrational not to search, by all means technical possible, to use to advantage this clean, ecological and gratuitous power plant. In this dissertation evaluate the performance of solar cooker of the type box. Laboratory of Solar Energy of the Federal University of the Great River of North - UFRN was constructed by the group (LES) a model of solar stove of the type box and was tested its viability technique, considering modeling foods submitted when baking in the solar oven, the cooker has main characteristic the easiness of manufacture and assembly, the low cost (was used material accessible composition to the low income communities) and simplicity in the mechanism of movement of the archetype for incidence of the direct solar light. They had been proposals modeling for calculations of food the minimum baking time, considering the following models of transference of heat in the transient state: object the halfinfinite, plain plate and the model of the sphere to study the necessary temperature for the it bakes of bread (considering spherical geometry). After evaluate the models of transmission of heat will be foods submitted you the processes of to it bakes of, the times gotten for the modeling with the experimental times of it bakes in the solar oven had been compared, demonstrating the modeling that more good that it portraies the accuracies of the results of the model