62 resultados para Argamassas - Produção industrial
Resumo:
A Proteção Respiratória Ocupacional é atualmente uma exigência legal do Ministério do Trabalho e Emprego para garantia da saúde e segurança de milhares de trabalhadores que labutam com exposição habitual a substâncias nocivas que possam ocasionar doenças ocupacionais por inalação de ar contaminado no local de trabalho, cuja principal via de penetração no organismo humano é o Sistema Respiratório. Carvões ativados são materiais obtidos a partir de fontes carbonáceas e utilizados como elemento tecnológico filtrante nos equipamentos destinados a proteção respiratória individual. Fomentada por esse contexto, e visando potencializar conceitos de eco-eficiência e sustentabilidade em produção de materiais, este trabalho destina-se a produção de carvão ativado com potencial filtrante a partir de um rejeito agrícola abundante na região Nordeste do Brasil através de uma rota que favorece carbonização e ativação simultâneas, seguido de neutralização térmica. A biomassa precursora foi caracterizada por Ensaios padrões para determinação do teor de umidade e cinzas, Análise Química Elementar, Análises Térmicas (TG e DSC) e Distribuição Granulométrica por difração a laser. As amostras de carvões ativos sintetizadas foram caracterizadas por Difração de Raios X (DRX), Medidas de área específica por BET, Microscopia Eletrônica de Varredura (MEV), Análise assistida com ultravioleta visível e Redução à Temperatura Programada (TPR) por Amônia. A rota empregada favorece uma tecnologia alternativa para o aproveitamento de resíduos e aplicável para a Proteção Respiratória Ocupacional. A atmosfera de queima influencia diretamente na produção. A temperatura de carbonização variou conforme a estabilidade térmica da amostra. A cristalinidade, morfologia, teor mineralógico, área superficial específica e a adsorção em fase líquida e gasosa variaram em função da interação do resíduo precursor com o tipo e concentração de ácido utilizado. Os ensaios de adsorção demonstraram a efetividade da ativação segundo a rota experimental proposta. O potencial catalítico dos materiais produzidos para uso em máscaras respiratórias foi evidenciado pelo ensaio de TPR. O processo de produção estudado se mostrou eficaz para obtenção dos carvões promovendo processamentos e aplicações mais nobres para materiais cujo uso tem sido restrito a meras aplicações primárias ou descarte, mas cujo potencial tecnológico é amplo, empreendedor, sustentável, viável em escala industrial e de baixo custo.
Resumo:
FORMIGA, Felipe Lira et al. Avaliação da Potencialidade de Uso do Resíduo Proveniente da Indústria de Beneficiamento do Caulim na Produção de Piso Cerâmico. Cerâmica Industrial, v. 14, p. 41-45, 2009.
Resumo:
CAMPOS,Maria da Luz Góis; ANEZ,Miguel Eduar- do Moreno; CARÍCIO,Marcelo Rique. Estratégias de Competitividade Industrial em Empresas Cooperativas:O caso COMTERN. In:ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 23, 2003, Minas Gerais. Anais...Ouro Petro: ADEPRO, 2003. p. 1-8.
Resumo:
This work aims to analyze and evaluate the Urban furniture designed to public areas according to the Revitalization planning for Rio Grande do Norte coastland, defining visual relations among urban elements in the landscape of revitalized public urban areas with cultural, paisagistic and touristic values and the design process used for developing urban furniture to those areas, observing the incoming consequences use to that process in a specific urban context which alters use, functions, cultural images as well as social values attributed to each particular place. Environmental perceptions, legibility of local cultural references and their representation through the design of urban elements, act in a positive or negative manner over the inhabitants cognition process of some particular revitalized area, determining new use and attributions to those areas. Designs for coastal urban interventions try excessively to standardize technical media, construction materials and planning configurations, creating artificial sceneries that segregates users, imposing new structures and usage, generating, consequently, the so called non-places and burlesque regionalism. The research is divided into 4 chapters: 1) Theoretical support (Industrial design; Urban furniture; Public urban spaces; Urban image and environmental perception; Urban occupation and interventions in coastland areas); 2) Methodological procedures and data collection; 3) Analysis of Rio Grande do Norte coastal areas and their urban interventions; 4) Final considerations and Industrial Design contributions to the subject
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
without practical results so far. Protocols used in biotechnological cultured aquatic organisms aimed at increasing growth rates and disease resistance, have been studied and perfected. Among the available techniques, the application of chromosomal manipulation, although still nascent, is presented as a tool aimed at mitigating ecological and economical issues in shrimp farming. The polyploidization artificial method already employed in fish and shellfish, has been widely researched for use in farmed shrimp. Some limitations of this method of expansion in shrimp refer to a better knowledge of cytogenetic aspects, the level of sexual dimorphism and performance in growing conditions. To contribute on some of these issues, the present study aimed to characterize cytogenetic species Litopenaeus vannamei (Decapoda) and Artemia franciscana (Anostraca), analyze the effectiveness of methods for detection of ploidy, through the use of flow cytometry in processes of induction polyploidy cold thermal shock at different stages of development of newly fertilized eggs. Additionally, aimed also the qualitative and quantitative comparison of larval development between diploid and polyploid organisms, besides the identification of sexual dimorphism in L. vannamei, through geometric morphometrics. The results provide information relevant to the improvement and widespread use of biotechnological methods applied toward national productivity in shrimp farming
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
he present model of agriculture is based on intensive use of industrial inputs, due to its rapid response, but it brings harmful consequences to the environment, and it is necessary the use of modern inputs. And an alternative is the use of rock biofertilizers in agriculture, a product easy to use, with higher residual effect and does not harm the environment. The objective of study was to evaluate the inoculation and co-inoculation of different microorganisms in the solubilization of rock phosphate and potash ground microbial evaluating the best performance in the production of biofertilizers comparing with rocks pure in soil chemical properties and, verify effect of inoculation of the bacterium Paenibacillus polymyxa in the absorption of minerals dissolved in the development of cowpea (Vigna unguiculata [L.] Walp.). The first bioassay was conducted in Laboratory (UFRN) for 72 days in Petri dishes, where the rock powder was increased by 10% and sulfur co-inoculated and inoculated with bacterial suspension of Paenibacillus polymyxa grown in medium tryptone soy broth, Ralstonia solanacearum in medium Kelman, Cromobacterium violaceum in medium Luria-Bertani and Acidithiobacillus thiooxidans in medium Tuovinen and Kelly,and fungi Trichoderma humatum and Penicillium fellutanum in malt extract. Every 12 days, samples were removed in order to build up the release curve of minerals. The second bioassay was conducted in a greenhouse of the Agricultural Research Corporation of Rio Grande do Norte in experimental delineation in randomized block designs, was used 10 kg of an Yellow Argissolo Dystrophic per pot with the addition of treatments super phosphate simple (SS), potassium chloride (KCl), pure rock, biofertilizers in doses 40, 70, 100 and 200% of the recommendation for SS and KCl, and a control, or not inoculated with bacteria P. polymyxa. Were used seeds of cowpea BRS Potiguar and co-inoculated with the bacterial suspension of Bradyrhizobium japonicum and P. polymyxa. The first crop was harvested 45 days after planting, were evaluated in the dry matter (ADM), macronutrients (N, P, K, Ca, Mg) and micronutrients (Zn, Fe, Mn) in ADM. And the second at 75 days assessing levels of macro end micronutrients in plants and soil, and the maximum adsorption capacity of P in soil. The results showed synergism in co-inoculations with P. polymyxa+R. solanacearum and, P. polymyxa+C. violaceum solubilizations providing higher P and K, respectively, and better solubilization time at 36 days. The pH was lower in biofertilizers higher doses, but there was better with their addition to P at the highest dose. Significant reduction of maximum adsorption capacity of phosphorus with increasing dose of biofertilizer. For K and Ca was better with SS+KCl, and Mg to pure rock. There was an effect of fertilization on the absorption, with better results for P, K and ADM with SS+KCL, and N, Ca and Mg for biofertilizers. Generally, the P. polymyxa not influence the absorption of the elements in the plant. In treatments with the uninoculated P. polymyxa chemical fertilizer had an average significantly higher for weight and number of grains. And in the presence of the bacteria, biofertilizers and chemical fertilizers had positive values in relation to rock and control. The data show that the rocks and biofertilizers could meet the need of nutrients the plants revealed as potential for sustainable agriculture
Resumo:
Brazil is a great ceramic raw materials productor because of the its big number of clay deposits, in various areas of the ceramic industry. Although, the majority of the natural reservations are unknown or not studied yet, so there is no scientific technical dates that can guide their usage and industrial application, as well as the racional and optimazed way of usage by the industrial sector. The state of Maranhão has a gigant mineral wealth as esmectite, bentonite, kaolin, clays, feldspates, marine salt, iron and others, but produce only products with small agregated value compared to the porcelanato, one of the most expensives ceramic cover tiles, the reason for that is the low water absorption (lower than 0,5%), beside present amazing tecnicals features, like mechanical resistence. The main objective of the work is to do the characterization of four clays, with the finallity of find an application by the results and develop formulations to produce porcelanato using these raw materials from Timon-MA. For this were made the raw materials characterization using X ray fluorecence; X ray diffraction; Differencial thermal analysis; Dilatometric analysis and Tecnological properties, planing three formulations that were sinterized at six different temperatures: 1150, 1170, 1190, 1210, 1230 and 1250ºC for 7 minutes. After the sinteratization, the samples were submitted to tension resistance analysis. Were attained two formulations with the requested properties to produce porcelanato
Resumo:
Current environmental concerns include the excessive consumption and inefficient use of non-renewable natural resources. The construction industry is considered one of the largest consumers of natural raw materials, significantly contributing to the environmental degradation of the planet. The use of calcareous quarry (RPPC) and porcelain tile polishing residues (RPP) as partial replacements of the cement in mortars is an interesting alternative to minimize the exploration of considerably large amounts of natural resources. The present study aimed at investigating the properties of fresh and hardened mortars produced using residues to replace cement. The residues used were fully characterized to determine their specific mass, unitary mass, particle size distribution and morphology, and composition. The performance of the mortars was compared to that of reference compositions, prepared without residues. A total of 18 compositions were prepared, 16 using residues and 2 reference ones. The mortars were prepared using Portland CP II F 32 cement, CH I hydrated lime, river sand and tap water. The compositions of the mortars were 1:1:6 and 1:0.5:4.5 (vol%), and water to cement ratios of 1.87 and 1.45 were used, respectively. The mortars in the fresh state were evaluated by consistency index, water retention, density of mass and incorporated air content tests. In their hardened state, the mortars were evaluated by apparent mass density, modulus of elasticity, flexural tensile strength, compressive strength and water absorption by capillarity. The mortars were also analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and fluorescence. Finally, they were classified according to NBR 13281 standards. The mortars prepared using residues partially replacing the cement exhibited lower modulus of elasticity compared to the reference compositions, thus improving the performance in their intended use. On the downside, the water absorption by capillarity was affected by the presence of residues and both the tensile and compressive strength were reduced. However, from the overall standpoint, the replacement of cement by calcareous quarry or porcelain tile polishing residues did not result in significant changes in the properties of the mortars. Therefore, compositions containing these residues can be used in the construction industry
Resumo:
The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested
Resumo:
Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, addedvalue products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of this study was to evaluate the conditions necessary to convert sisal into alumina fibers by biotemplating. Alumina fibers were obtaining after pretreating sisal fibers and infiltrating them with a Al2Cl6 saturated solution, alumina sol from aluminum isopropoxide or aluminum gas. Heat-treating temperatures varied from 1200 ºC to 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. Fibers obtained by liquid infiltration revealed conversion only of the surface of the fiber into α-Al2O3, which yielded limited resistance to handling. Gas infiltration resulted in stronger fibers with better reproduction of the inner structure of the original fiber. All converted fibers consisted of 100% α-Al2O3 suggesting a wide range of technological applications especially those that require thermal isolation
Resumo:
In recent years, the area of advanced materials has been considerably, especially when it comes to materials for industrial use, such as is the case with structured porosity of catalysts suitable for catalytic processes. The use of catalysts combined with the fast pyrolysis process is an alternative to the oxygenate production of high added value, because, in addition to increasing the yield and quality of products, allows you to manipulate the selectivity to a product of interest, and therefore allows greater control over the characteristics of the final product. Based on these arguments, in this work were prepared titanium catalysts supported on MCM-41 for use in catalytic pyrolysis of biomass, called elephant grass. The reactions of pyrolysis of biomass were performed in a micro pyrolyzer, Py-5200, coupled to GC / MS, the company CDS Corporation, headquartered in the United States. The catalysts Ti-MCM-41 in different molar ratios were characterized by XRD, TG / DTG, FT-IR, SEM, XRF, UV-visible adsorption of nitrogen and the distribution of particle diameter and specific surface area measurement by the BET method. From the catalytic tests it was observed that the catalysts synthesized showed good results for the pyrolysis reaction.The main products were obtained a higher yield of aldehydes, ketones and furan. It was observed that the best reactivity is a direct function of the ratio Si/Ti, nature and concentration of the active species on mesoporous supports. Among the catalysts Ti-MCM-41 (molar ratio Si / Ti = 25 and 50), the ratio Si / Ti = 25 (400 ° C and 600 ° C) favored the cracking of oxygenates such as acids , aldehydes, ketones, furans and esters. Already the sample ratio Si / Ti = 50 had the highest yield of aromatic oxygenates
Resumo:
The environmental impacts, caused by the solid residues generation, are an often quoted concern nowadays. Some of these residues, which are originated from different human activities, can be fully reused, reducing the effects of the poor waste management on the environment. During the salt production process, the first formed crystals are discarded as industrial waste. This is mainly made of gypsum that is a calcium sulfate dihydrate (CaSO4.2H2O). The gypsum in question may go through a calcination process due to the plaster (CaSO4.0,5H2O) production and then the application on the cement industry. Considering the necessity of development and application for these industrial wastes, this paper aims to analyze the plaster, called Salgesso, from the gypsum that was generated during the salt production, and its use viability on the civil construction industry in order to create environmental and economical benefits. For characterization, the following experiments were performed: X-ray Fluorescence (XRF), X-ray Diffraction (XRD), thermal analysis (TG/DTG) and Scanning Electron Microscopy (SEM) with EDS. The following tests were also performed to obtain the mechanical characteristics: Thinness Modulus, Unit Mass, Setting Time and Compressive Resistance. Three commercial plasters used on civil construction were taken as references. All of these tests were performed according to the current standards. It was noticed that although there were some conflicting findings between the salt and commercial plasters in all of the studied properties, the Salgesso has its values within the standard limits. However, there is the possibility to improve them by doing a more effective calcination process. Three commercial plasters, used in construction, were used as reference material. All tests were performed according to standards in force. It was observed that although some tests present conflicting findings between the salt and gypsum plasters commercial properties in all of the studied Salgesso have values within the limits imposed by the standard, but can be improved simply by calcination process more effective
Resumo:
Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%