50 resultados para Análsis ecológico
Resumo:
The knowledge of the phytoplankton community, as an integral and dynamic processes of eutrophication, provides information essential for proper management and handling. A growing problem of cyanobacteria in reservoirs around the world as a result of artificial eutrophication processes, generating a particular concern, because some species produce cyanotoxins, which can cause adverse effects on human health. The present work aims to characterize the spatial and temporal dynamics of phytoplankton, assessing their potential as ecological indicator of water quality in reservoirs semiarid region. The samples of water were collected monthly between 2009 and 2011, at three points along the dam Armando Ribeiro Gonçalves / RN. In each sample were measured physico - chemical analysis of water and biological components. We conducted a scientific dissemination activity, with distribution and reading primer on eutrophication, informative talk about water quality, questionnaires and performing a play in a public school in the city of Itajá / RN. The reservoir was considered eutrophic in three points, taking into account the values of chlorophyll -a and phosphorus, adopted to characterize eutrophic environments of semi-arid areas. High density of cyanobacteria, with a maximum value of 2.227.862 cél.ml- 1 and minimum of 43.456 cél.ml- 1 was recorded in lentic and semilêntico points throughout the study, exceeding the levels of drinking water (20.000 cél.ml- 1) established in 2.914/2011 Ordinance of the Ministry of Health of Brazil. All samples contained microcystin, and 44 % had values superiores1μg L- 1. The thermal pattern of the water column showed micro stratifications with differences of less than 1 ° C from five feet deep. The distribution pattern was the type profile clinogrado with oxygen deficit in the bottom of the reservoir. Oxiclina from 10 meters depth was observed during the rainy season (May-June) in the two years of study. The phytoplankton community was represented by 10 functional groups: S1, M, H1, Lo, P, F, Sn, P, W2 and R. The assessment of the ecological status of the system by the index Q showed poor water quality. The results of the study show that the vertical variations were less pronounced than the seasonal variations of cyanobacteria and phytoplankton community in general in the reservoir. The presence of cyanotoxins confirms the need for the monitoring of water quality and measures to reduce eutrophication in water supply reservoirs semiarid RN and demonstrates the challenge for water managers and health authorities to ensure water quality and consequently minimize risks to human health. Compared to the lecture, the primer was considered more efficient in sensitizing the participants, featuring a dynamic practice, differentiated learning, create opportunities for students to rethink attitudes of respect and care for the environment, and shall have the opportunity to learn the subject content from your reality and living environment. The knowledge generated from the activity of scientific were seen as essential for raising awareness of some of the region`s environmental problems , such as eutrophication
Resumo:
The diversity of fish species from South America has been affected by various anthropogenic practices. Some studies have reported the influence that illegal transferring or introduction of exotic species have on the trophic webs of continental lakes. The loss of diversity on fish populations and consequent impacts on fishery are commonly evidenced in these cases. The Brazilian Northeast has ponds for which exotic Amazonian species were transferred as Extremoz Lake. These environments serve as study models for comparison and investigation about the possible impacts of these introductions. We tested the hypothesis that loss of species that this trend can be related with the insertion of the genus Cichla, commonly documented as top predator in its endemic environment. Possible structural causes that interfere in other processes such as migration were also investigated. Thus, the local ecological knowledge of fishermen and a current ecotrophic model were used. We took samples of phytoplankton, zooplankton and fishes during two annual cycles. Concurrently, we made interviews with the fishing community. In fact, there are relations between the loss of fish and the insertion of peacock bass in Extremoz Lake. However, Cichla kelberi was not indicated as primary factor to explain fish species decline. The construction of bridges located in the Rio Doce was main factor for respondents and what explains loss of species. The migration of saltwater fish and / or from the river to Extremoz Lake is hindered by the unsuitability of the crossing-streams that are under these structures. According to the ecotrophic model Hoplias malabaricus was considered key-species and Cichla kelberi top predator. This last trend was similarly noticed in the stomach and local ecological knowledge of fishermen analysis. Overfishing simulations to Cichla kelberi resulted that only raising its captures in 200%, other native species would increase their biomass values only 15 to 30% (in 6 years).The negative effects of the alien species introduction without prior studies and lack of investments in appropriating these constructions to the needs of the fish fauna structures seem to act simultaneously. Both are causing the decline of fish species richness and consequent local artisanal fishery collapse
Resumo:
The aim of this study is to investigate the eco-environmental vulnerability, its changes, and its causes to develop a management system for application of eco-environmental vulnerability and risk assessment in the Apodi-Mossory estuary, Northeast Brazil. This analysis is focused on the interference of the landscape conditions, and its changes, due to the following factors: the oil and natural gas industry, tropical fruits industry, shrimp farms, marine salt industry, occupation of the sensitive areas; demand for land, vegetation degradation, siltation in rivers, severe flooding, sea level rise (SLR), coastal dynamics, low and flat topography, high ecological value and tourism in the region and the rapid growth of urbanization. Conventional and remote sensing data were analyzed using modeling techniques based on ArcGIS, ER-Mapper, ERDAS Imagine and ENVI software. Digital images were initially processed by Principal Component Analysis and transformation of the maximum fraction of noise, and then all bands were normalized to reduce errors caused by bands of different sizes. They were integrated in a Geographic Information System analysis to detect changes, to generate digital elevation models, geomorphic indices and other variables of the study area. A three band color combination of multispectral bands was used to monitor changes of land and vegetation cover from 1986 to 2009. This task also included the analysis of various secondary data, such as field data, socioeconomic data, environmental data and prospects growth. The main objective of this study was to improve our understanding of eco-environmental vulnerability and risk assessment; it´s causes basically show the intensity, its distribution and human-environment effect on the ecosystem, and identify the high and low sensitive areas and area of inundation due to future SLR, and the loss of land due to coastal erosion in the Apodi-Mossoró estuary in order to establish a strategy for sustainable land use. The developed model includes some basic factors such as geology, geomorphology, soils, land use / land cover, vegetation cover, slope, topography and hydrology. The numerical results indicate that 9.86% of total study area was under very high vulnerability, 29.12% high vulnerability, 52.90% moderate vulnerability and 2.23% were in the category of very low vulnerability. The analysis indicates that 216.1 km² and 362.8 km² area flooded on 1m and 10m in sea levels respectively. The sectors most affected were residential, industrial and recreational areas, agricultural land, and ecosystems of high environmental sensitivity. The results showed that changes in eco-environmental vulnerability have a significant impact on the sustainable development of the RN state, since the indicator is a function of sensitivity, exposure and status in relation to a level of damage. The model were presented as a tool to assist in indexing vulnerability in order to optimize actions and assess the implications of decisions makers and policies regarding the management of coastal and estuarine areas. In this context aspects such as population growth, degradation of vegetation, land use / land cover, amount and type of industrialization, SLR and government policies for environmental protection were considered the main factors that affect the eco-environmental changes over the last three decades in the Apodi-Mossoró estuary.
Resumo:
This study aimed to characterize, for the first time, the benthic invertebrates that inhabit the region of soft bottoms adjacent to the APARC reefs in order to situate them as an important component of infralittoral coastal areas of Northeast Brazil. Soft bottoms areas of APARC corresponds to infralittoral zones vegetated by seagrass Halodule wrightii and unvegetated infralittoral zones, both subjected to substantial hydrodynamic stress. Through scuba diving, biological and sedimentary samples of both habitats were analyzed, with a cylindrical sampler. We identified 6160 individuals belonging to 16 groups and 224 species. The most abundant macrofaunal group was Polychaeta (43%), followed by Mollusca (25%) and Crustacea (14%), what was expected for these environments. In the first chapter, regarding vegetated areas, we tested three hypotheses: the existence of differences in the faunal structure associated with H. wrightii banks submitted to different hydrodynamic conditions; the occurrence of minor temporal variations on the associated macrofauna of banks protected from hydrodynamic stress; and if the diversity of macrofauna is affected by both benthophagous predators and H. wrightii biomass. It was observed that macrofauna associated at the Exposed bank showed differences in structure when comparing the Protected bank, the granulometry of the sediments, that co-varies with the hydrodynamism, was the cause of these variations. The results also pointed to a lower temporal variation in the macrofaunal structure on the Protected bank and a negative relation between macrofaunal and benthophagous fish abundance. At the Exposed bank, a greater faunal diversity was observed, probably due to the higher seagrass biomass. The second chapter compares the vegetated and non-vegetated areas in order to test the hypothesis that due to greater seasonal stability in tropical environments, seagrass structure would act to distinguish the vegetated and non-vegetated areas macrofauna, over time. It was also expected that depositivores were the most representative invertebrates on non-vegetated environments, on the assumption that the seagrass bank would work as a source of debris to adjacent areas, enriching them. Considering all sampling periods, the total macrofauna abundance and diversity were higher in vegetated areas, when compared to non-vegetated ones. Seasonally, the structural complexity provided by Halodule differentiated more clearly the fauna from vegetated and non-vegetated areas, but only at the climatic extremes, i.e. Dry season (extreme climatic stability, with low hydronamism variation) and Rainy season (great hydrodynamism variation and probably vegetated bank burial). Furthermore, the high organic matter levels measured in the sandy banks coincided with an outstanding trophic importance of deposit feeders, proving the debris-carrying hypothesis. The last chapter focused on the non-vegetated areas, where we tested that the hypothesis infaunal halo in tropical reefs depending on local granulometry. In this context, we also tested the hypothesis that benthophagous fish predation would have an effect on the low abundance of macrofaunal groups due to the high hydrographic stress, thus allowing other predatory groups to have greater importance in these environments. Proving the hypothesis, no spatial variation, both on abundance families neither on community structure, occur along distance of the edge reefs. However, we found that complex combinations of physical factors (grain size and organic matter levels originated from local hydronamic conditions) covary with the distance from the reefs and has stronger influence on macrofauna than considered biological factors, such as predation by benthophagous fishes. Based on the main results, this study shows that unconsolidated areas around APARC reefs are noteworthy from an ecological and conservational point of view, as evidenced by the biota-environment and organismal relations, never before described for these areas
Resumo:
This work was developed in the Potengi river estuary, northern coastal city of Natal, located in the State of Rio Grande do Norte. The objective was to study the dynamics of Multitemporal Space in that estuary, however, analyze how this environment has behaved during the years 1988, 1994 and 2006. The definition of that, there was the fact that during that period, which occurred in that area and more intensive space exploration to practice economic activities as well as a greater and more rapid expansion of urban area. This study was supported by the Remote Sensing, who have been shown today, as an efficient analysis of the environmental studies, through geoprocessing techniques. From the performed analysis it was found that occurred during the period of study (1988 to 2006), a huge change in the design of the estuary of Potengi river. The figures showed the area of vegetation was decreased 65.22%, the deforested area increased by 70.44% and the shrimp activity grow 452.07% and the urban area was increased in 52.65% along that period described. Considering the numbers shown there that the process of occupying space in that area requires attention, because it is an environment that represents a huge contribution to the ecological balance.