299 resultados para Absortimetria de raios-x em duas energias


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the relatively organized cashew (Anacardium occidentale L.) productive chain and the number of cashew derivatives found in the market, it is estimated that over 90% of the cashew peduncle is wasted. A possible strategy for a better commercial exploitation of this agroindustrial commodity would be the production of spray dried cashew pulp. Thus, this paper approaches the yellow cashew pulp spray drying process and the final product evaluation. Based on that, the shelf life of the spray dried cashew pulp packed in different packaging was evaluated. Drying was conducted in two drying temperatures (140 °C to 150 °C) and two concentrations of Arabic gum (AG, 15% and 25%), which summed four experimental groups. The drying performance was evaluated as well as the physicochemical characteristics (moisture, water activity, total soluble solids, pH, density, solubility, particle diameter, hygroscopicity, degree of caking, color, scanning electronic microscopy and X-ray diffraction), composition (protein, ash, fat and sugars) and bioactive and functional value (total phenolic compounds, carotenoids, ascorbic acid and antioxidant activity) of the final products. Results showed spray drying efficiency higher than 65% for all experiments, mainly for the C4 group (150 °C and 25% AG) which reached efficiency of 93.4%. It was also observed high solubility (94.7% to 97.9%) and the groups with lower hygroscopicity (5.8% and 6.5%) were those with the highest proportion of drying coadjuvant. The particle diameters ranged between 14.7 μm and 30.2 μm and increased with the proportion of AG. When comparing the product before and after spray drying, the drying impact was evident. However, despite the observed losses, dried yellow cashew showed high phenolic concentration (from 235.9 to 380.4 mg GAE eq / 100 g DM), carotenoids between 0.22 and 0.49 mg/100 g DM and remarkable ascorbic acid levels (852.4 to 1346.2 mg/100 g DM), in addition to antioxidant activity ranging from 12.9 to 16.4 μmol TE/ g DM. The shelf life study revealed decreased phenolic content over time associated to a slight water activity increase. Overall, our results unveil the technological and bioactive potential of dried yellow cashew as a functional ingredient to be used in food formulations or as a ready-to-use product. The technological approach presented here can serve as an efficient strategy for a rational use of the cashew apple, avoiding its current underutilization

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric Refrigerators (TEC Thermoelectric Cooling) are solid-state heat pumps used in applications where stabilization of temperature cycles or cooling below the room temperature are required. TEC are based on thermoelectric devices, and these in turn, are based on the Peltier effect, which is the production of a difference in temperature when an electric current is applied to a junction formed by two non-similar materials. This is one of the three thermoelectric effects and is a typical semiconductor junction phenomenon. The thermoelectric efficiency, known as Z thermoelectric or merit figure is a parameter that measures the quality of a thermoelectric device. It depends directly on electrical conductivity and inversely on the thermal conductivity. Therefore, good thermoelectric devices have typically high values of electrical conductivity and low values of thermal conductivity. One of the most common materials in the composition of thermoelectric devices is the semiconductor bismuth telluride (Bi2Te3) and its alloys. Peltier plates made up by crystals of semiconductor P-type and N-type are commercially available for various applications in thermoelectric systems. In this work, we characterize the electrical properties of bismuth telluride through conductivity/resistivity of the material, and X-rays power diffraction and magnetoresistance measurements. The results were compared with values taken from specific literature. Moreover, two techniques of material preparation, and applications in refrigerators, are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic cracking of triglycerides presents itself as a possible alternative to the production of biofuels with low emission of pollutants. In this work were synthesized the SAPO-5, the catalysts for the cracking reaction of soybean oil is presented. The solids were powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG) and infrared spectroscopy (FTIR). The analyses indicated that the synthesis method has employed to obtain materials with high surface area and high acid. The soybean oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. The products obtained in the cracking of soybean oil were analyzed by distillation, acid number, infra-red spectroscopy, density, viscosity, carbon residue, cetane number determination and characterization. The analysis of the products obtained in the presence and in the absence of the SAPO-5 permitted to conclude that all the solids tested presented catalytic activity in the deoxygenation of final products only at the second step of the cracking process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous materials zeolite type Beta and mesoporous type MCM-41 and AlMCM-41 were synthesized hydrothermally and characterized by methods of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, surface acidity, nitrogen adsorption, thermal analysis TG / DTG. Also we performed a kinetic study of sunflower oil on micro and mesoporous catalysts. The microporous material zeolite beta showed a lower crystallinity due to the existence of smaller crystals and a larger number of structural defects. As for the mesoporous materials MCM-41 and AlMCM-41 samples showed formation of hexagonal one-dimensional structure. The study of kinetic behavior of sunflower oil with zeolite beta catalysts, AlMCM-41 and MCM-41 showed a lower activation energy in front of the energy of pure sunflower oil, mainly zeolite beta. In the thermal cracking and thermocatalytic of sunflower oil were obtained two liquid fractions containing an aqueous phase and another organic - organic liquid fraction (FLO). The FLO first collected in both the thermal cracking as the thermocatalytic, showed very high level of acidity, performed characterizations of physicochemical properties of the second fraction in accordance with the specifications of the ANP. The second FLO thermocatalytic collected in cracking of sunflower oil presented results in the range of diesel oil, introducing himself as a promising alternative for use as biofuel liquid similar to diesel, either instead or mixed with it

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical modification of clays has been extremely studied in the search for improvements of their properties for use in various areas, such as in combating pollution by industrial effluents and dyes. In this work, the vermiculite was chemically modified in two ways, characterized and evaluated the adsorption of methylene blue dye. First was changed with the addition of a surfactant (hexadecyltrimethylammonium bromide, BHTA) making it an organophilic clay and then by adding an acid (HCl) by acid activation. Some analyzes were performed as X-ray fluorescence (FRX), X-ray diffraction (DRX), adsorption isotherms of methylene blue dye, infrared (FTIR) , scanning electron microscopy (SEM), thermal gravimetric analysis and spectroscopy energy dispersive (EDS). Analysis by FRX of natural vermiculite indicates that addition of silicon and aluminum, clay presents in its structure the magnesium, calcium and potassium with 16 % organic matter cations. The DRX analyzes indicated that the organic vermiculite was an insertion of the surfactant in the space between the lamellae, vermiculite and acid partial destruction of the structure with loss of crystallinity. The adsorption isotherms of methylene blue showed that there was a significant improvement in the removal of dye to the vermiculite with the addition of cationic surfactant hexadecyltrimethylammonium bromide and treatment with acid using HCl 2 mol/L. In acid vermiculites subsequently treated with surfactant, the adsorption capacity increased with respect to natural vermiculite, however was much lower compared vermiculite modified with acid and surfactant separately. Only the acidic vermiculite treated with surfactant adjusted to the Langmuir model. As in the infrared spectrometry proved the characteristics of natural vermiculite. In the organic vermiculite was observed the appearance of characteristic bands of CH3, CH2, and (CH3)4N. Already on acid vermiculite, it was realized a partial destruction with decreasing intensity of the characteristic band of vermiculite that is between 1074 and 952 cm-1. In the SEM analysis, it was observed that there was partial destruction to the acid treatment and a cluster is noted between the blades caused by the presence of the surfactant. The TG shows that the higher mass loss occurs at the beginning of the heating caused by the elimination of water absorbed on the surface between layers. In the organic vermiculite also observed a loss of mass between 150 and 300 °C caused decomposition of the alkylammonium molecules (surfactants)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic powders based on oxides of perovskite-type structure is of fundamental interest nowadays, since they have important ionic-electronic conductivity in the use of materials with technological applications such as gas sensors, oxygen permeation membranes, catalysts and electrolytes for solid oxide fuel cells (SOFC). The main objective of the project is to develop nanostructured ceramic compounds quaternary-based oxide Barium (Br), Strontium (Sr), Cobalt (Co) and Iron (Fe). In this project were synthesized compounds BaxSr(1-x)Co0, 8Fe0,2O3- (x = 0.2, 0.5 and 0.8) through the oxalate co-precipitation method. The synthesized powders were characterized by thermogravimetric analysis and differential thermal analysis (TGADTA), X-ray diffraction (XRD) with the Rietveld refinement using the software MAUD and scanning electron microscopy (SEM). The results showed that the synthesis technique used was suitable for production of nanostructured ceramic solid solutions. The powders obtained had a crystalline phase with perovskite-type structure. The TGA-DTA results showed that the homogeneous phase of interest was obtained temperature above 1034°C. It was also observed that the heating rate of the calcination process did not affect the elimination of impurities present in the ceramic powder. The variation in the addition of barium dopant promoted changes in the average crystallite size in the nanometer range, the composition being BSCF(5582) obtained the lowest value (179.0nm). The results obtained by oxalate co-precipitation method were compared with those synthesis methods in solid state and EDTA-citrate method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of nanostructured materials using natural clays as support, has been studied in literature under the same are found in nature and consequently, have a low price. Generally, clays serve as supports for metal oxides by increasing the number of active sites present on the surface and can be applied for various purposes such as adsorption, catalysis and photocatalysis. Some of the materials that are currently highlighted are niobium compounds, in particular, its oxides, by its characteristics such as high acidity, rigidity, water insolubility, oxidative and photocatalytic properties. In this scenario, the study aimed preparing a composite material oxyhydroxide niobium (NbO2OH) / sodium vermiculite clay and evaluate its effectiveness with respect to the natural clay (V0) and NbO2OH. The composite was prepared by precipitation-deposition method and then characterized by X-ray diffraction, infrared spectroscopy (XRD), energy dispersive X-ray (EDS), thermal analysis (TG/DTG), scanning electron microscopy (SEM), N2 adsorption-desorption and investigation of distribution of load. The application of the material NbO2OH/V0 was divided in two steps: first through oxidation and adsorption methods, and second through photocatalytic activity using solar irradiation. Studies of adsorption, oxidation and photocatalytic oxidation monitored the percentage of color removal from the dye methylene blue (MB) by UV-Vis spectroscopy. The XRD showed a decrease in reflection d (001) clay after modification; the FTIR indicated the presence of both the clay when the oxyhydroxide niobium to present bands in 1003 cm-1 related to Si-O stretching bands and 800 cm-1 to the Nb-O stretching. The presence of niobium was also confirmed by EDS indicated that 17 % by mass amount of the metal. Thermal analysis showed thermal stability of the composite at 217 °C and micrographs showed that there was a decrease in particle size. The investigation of the surface charge of NbO2OH/V0 found that the material exhibits a heterogeneous surface with average low and high negative charges. Adsorption tests showed that the composite NbO2OH/V0 higher adsorption capacity to remove 56 % of AM, while the material removed from V0 only 13 % showed no NbO2OH and adsorptive capacity due to the formation of H-aggregates. The percent removal of dye color for the oxidation tests showed little difference from the adsorption, being 18 and 66 % removal of dye color for V0 and NbO2OH/V0 respectively. The NbO2OH/V0 material shows excellent photocatalytic activity managing to remove just 95,5 % in 180 minutes of the color of MB compared to 41,4 % and 82,2 % of V0 the NbO2OH, proving the formation of a new composite with distinct properties of its precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clays are materials with specific properties that make them promising for various studies. In this work we used the vermiculite clay as support for iron compounds, in order to obtain promising materials for application in the heterogeneous type photo-Fenton process. In all, the study included six solid, starting from the vermiculite (V0) was obtained calcined vermiculite (V0-C), the mixed material (V0/β-FeOOH) formed by vermiculite more akaganeite, exchanged vermiculite (v0t-C), vermiculite impregnated Wet (V0u-C) and V0u-CL that is the solid obtained by impregnating with a back washing. The solids of the study had their physical and chemical characteristics investigated by the following characterization techniques: X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Energy Dispersive Spectroscopy (EDS), X-Ray Fluorescence Spectroscopy (XRF), UV-Vis by Diffuse Reflectance (DR UV-Vis), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The V0 material showed three distinct phases, which are the very vermiculite, hidrobiotite and biotite, the last two phases are part of the geological of formation process vermiculite. The solids obtained after the modification showed an increase in the amount of iron present in the clay, these being quantities important for application in photocatalysis. The micrographs and EDS data, show that after treatment of addition of the metal , the iron was intercalary in structure of vermiculite for solid V0t-C and V0u-C, however, this did not occur with mixed material. In the photoFenton process, was observed a maximum removal of 88.8% of the dye methylene blue coloring for the catalyst V0/β-FeOOH, while for the other solids was obtained values between 76.8 and 62.6%, compared to 37.8% of discoloration without the presence of catalyst. Therefore, it is concluded that the vermiculite clay presents as a good catalyst and iron support for the, beyond of presenting a low cost because of its high abundance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to conventional composites, polymer matrix nanocomposites typically exhibit enhanced properties at a significantly lower filler volume fraction. Studies published in the literature indicate t hat the addition of nanosilicate s can increase the resistance to flame propagation in polymers. In this work, a treatment of montmorillonite (MMT) nano clay and the effect of its ad dition o n flame propagation characteristics of vinyl ester were studied. The resea rch was conducted in two stages. The first stage focused on the purification and activation of the MMT clay collected from a natural deposit to improve compatibility with the polymer matrix . Clay modification with sodium acetate was also studied to improve particle dispersion in the polymer. The second step was focused on the effect of the addition of the treated clay on nanocomposites ’ properties. Nanocomposites with clay con tents of 1, 2, 4 wt. % were processed. T he techniques for the characterization of the clay included X - ray fluorescence (XRF), X - r ay d iffraction (XRD), thermogravimetric a nalysis (TGA), d ifferential scanning c alorimetry (DSC) , s urface area (BET) and Fourier transform infrared spectroscopy (FTIR). For t he characterization of the nanocomposites , the techniques used were thermogravimetric a nalysis (TGA) , differential scanning c alorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) , scanning electron mi croscopy (SEM), transmission electron m icroscopy (TEM), and the determination of tensile strength, modulus of elasticity and resistance to flame propagation. According to the results, the purification and activation treatment with freeze - drying used in thi s work for the montmorillonite clay was efficient to promote compatibility and dispersion in the polymer matrix as evidenced by the characterization of the nanocomposite s . It was also observed that the clay modifica tion using sodium acetate did not produce any significant effect to improve compatibilization of the clay with the polymer. The addition of the treated MMT resulted in a reduction of up to 53% in the polymer flame propagation speed and did not affect the mechanical tensile strength and modulus o f elas ticity of the polymer, indicating compatibility between the clay and polymer. The effectiveness in reducing flame propagation speed peaked for nanocomposites with 2 wt. % clay, indicating that this is the optimum clay concentration for this property. T he clay treatment used in this work enables the production of vinylester matrix nanocomposites with flame - retardancy properties .