118 resultados para Óxido nítrico


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system in-Ceram Alumina, produced by VITA, consists in a technique of prepare of a substructure of ceramics to dental crowns. First burning is made in the alumina decanted by slip casting process under a stone die that reproduces the tooth prepared to receive a crown. In a second burning, alumina is infiltrated by vitreous system, giving to this set a high mechanic resistance. In this work, it s made a study of the composition of a new infiltrating material more used nowadays, giving to alumina desirable mechanics proprieties to its using like substructure of support to ceramic s crown used in the market today. The addition of Lanthanum oxide (frit A) and calcium oxide (frit B) was made in attempt to increase the viscosity of LZSA and to reduce fusion temperature. The frits were put over samples of alumina and took to the tubular oven to 1400ºC under vacuum for two groups (groups 1 and 2). For another two groups (groups 3 and 4) it was made a second infiltration, following the same parameters of the first. A fifth group was utilized like group of control where the samples of pure alumina were not submitted to any infiltrating process. Glasses manifested efficient both in quality and results of analysis of mechanic resistance, being perfectly compatible with oral environment in this technical requisite. The groups that made a second infiltration had he best results of fracture toughness, qualify the use in the oral cavity in this technical question. The average of results achieved for mechanic resistance to groups 1, 2, 3, 4 and 5 were respectively 98 MPa, 90 MPa, 144 MPa, 236 MPa and 23 MPa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes to do a study on the mathematical modeling of permeation of films based on chitosan. To conduct the study were obtained membranes with various compositions: a virtually pure membrane-based chitosan; one of chitosan associated with poly (ethylene oxide (PEO). The membranes of pure chitosan were treated with plasma in atmospheres of oxygen, argon and methane. The various types of films were characterized as to its permeation regarding sufamerazina sodium. In the process of mathematical modeling were compared the standard method of obtaining the coefficient of permeation recital straight down the slope of the plot obtained by extinction / time with a the integration process of numerical permeability rate will be calculated from the spectroscopy UV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural nanoclays are of great interest particularly for the production of polymer-based nanocomposites. In this work, kaolinite clays from two natural deposits in the State of the Rio Grande do Norte and Paraiba were purified with thermal treatment and chemical treatments, and characterized. Front to the gotten data, had been proposals methodologies for elimination or reduction of coarse particle texts, oxide of iron and organic substance. These methodologies had consisted of the combination of operations with thermal treatments, carried through in electric oven, and acid chemical attacks with and hydrogen peroxide. The Analyzers Thermogravimetric was used to examine the thermal stability of the nanoclays. The analysis indicated weight losses at temperatures under 110 ºC and over the temperature range of 350 to 550 ºC. Based on the thermal analysis data, the samples were submitted to a thermal treatment at 500 °C, for 8 h, to remove organic components. The X-ray diffraction patterns indicated that thermal treatment under 500 °C affect the basic structure of kaolinite. The BET surface area measurements ranged from 32 to 38 m2/g for clay samples with thermal treatment and from 36 to 53 m2/g for chemically treated samples. Thus, although the thermal treatment increased the surface area, through the removal of organic components, the effect was not significant and chemical treatment is more efficient, not affect the basic structure of kaolinite, to improve particle dispersion. SEM analysis confirms that the clay is agglomerated forming micron-size particles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work have been studied the preparation, characterization and kinetic study of decomposition of the polymerizing agent used in the synthesis under non-isothermal condition ceramics PrMO3 of general formula (M = Co and Ni). These materials were obtained starting from the respective metal nitrates, as a cations source, and making use of gelatin as polymerizing agent. The powders were calcined at temperatures of 500°C, 700°C and 900°C and characterized by X-ray Diffraction (XRD), Thermogravimetric Analysis (TG / DTG/ DTA), Infrared Spectroscopy (FTIR), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was detected in all the X-rays patterns. In the infrared spectroscopy observed the oxide formation as the calcination temperature increases with the appearance of the band metal - oxygen. The images of SEM revealed uniform distribution for the PrCoO3 and particles agglomerated as consequence of particle size for PrNiO3. From the data of thermal analysis, the kinetics of decomposition of organic matter was employed using the kinetics methods called Model Free Kinetics and Flynn and Wall, in the heating ratios 10, 20 and 30° C.min-1 between room temperature and 700°C. Finally, been obtained the values of activation energy for the region of greatest decomposition of organic matter in samples that were determined by the degree of conversion (α)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nanosized catalyst of nickelate of lanthanum doped with strontium (La(1-x)SrxNiO4-d; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300ºC/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000°C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N2 by BET method, X-ray diffraction (XRD), scanning electron microscopy (HR_SEM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700ºC have crystalline structure. The results of SEM evidenced the obtainment of nanometric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m2/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200ºC, the relation F/W equal to 0,7 mol h-1mcat -1. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells the solid oxide fuel are systems capable to directly convert energy of a chemical reaction into electric energy in clean, quiet way and if its components in the solid state differentiate of excessively the techniques for having all. Its more common geometric configurations are: the tubular one and to glide. Geometry to glide beyond the usual components (anode, cathode and electrolyte) needs interconnect and sealant. E the search for materials adjusted for these components is currently the biggest challenge found for the production of the cells. The sealants need to present chemical stability in high temperatures, to provoke electric isolation, to have coefficient of compatible thermal expansion with the excessively component ones. For presenting these characteristics the glass-ceramics materials are recommended for the application. In this work the study of the partial substitution of the ZrO2 for the Al2O3 in system LZS became it aiming at the formation of system LZAS, this with the addition of natural spodumene with 10, 20 and 30% in mass. The compositions had been casting to a temperature of 1500°C and later quickly cooled with the objective to continue amorphous. Each composition was worn out for attainment of a dust with average diameter of approximately 3μm and characterized by the techniques of DRX, FRX, MEV, dilatometric analysis and particle size analysis. Later the samples had been conformed and treated thermally with temperatures in the interval between 700-1000 °C, with platform of 10 minutes and 1 hour. The analyses for the treated samples had been: dilatometric analysis, DRX, FRX, electrical conductivity and tack. The results point with respect to the viability of the use of system LZAS for use as sealant a time that had presented good results as isolating electric, they had adhered to a material with similar α of the components of a SOFC and had presented steady crystalline phases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study it was used two metallic oxides, Ta2O5 and TiO2, in order to obtain metallic powders of Ta and Ti through aluminothermic reduction ignited by plasma. Ta2O5 and TiO2 powders were mixed with Al in a planetary mill, using different milling times. A thermal analysis study (DTA and TG) was carried out, in order to know the temperature to react both the mixtures. Then, these mixtures were submitted to a hollow cathode discharge, where they were reacted using aluminothermic reduction ignited by plasma. The product obtained was characterized by XRD and SEM, where it was proven the possibility of producing these metallic particles, different from the conventional process, where metallic ingots are obtained. It was verified that the aluminothermic reduction ignited by plasma is able to produce metallic powders of Ta and Ti, and a higher efficiency was observed to the process with Ta2O5-Al mixtures. Among different microstructural aspects observed, it can be noted the presence of metallic nanoparticles trapped into an Al2O3 matrix, besides acicular structures (titanium) and dendritic structures (tantalum), which are a product characteristic from a fast cooling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases