69 resultados para Água da chuva - Composição química
Resumo:
The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film
Resumo:
Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, addedvalue products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of this study was to evaluate the conditions necessary to convert sisal into alumina fibers by biotemplating. Alumina fibers were obtaining after pretreating sisal fibers and infiltrating them with a Al2Cl6 saturated solution, alumina sol from aluminum isopropoxide or aluminum gas. Heat-treating temperatures varied from 1200 ºC to 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. Fibers obtained by liquid infiltration revealed conversion only of the surface of the fiber into α-Al2O3, which yielded limited resistance to handling. Gas infiltration resulted in stronger fibers with better reproduction of the inner structure of the original fiber. All converted fibers consisted of 100% α-Al2O3 suggesting a wide range of technological applications especially those that require thermal isolation
Resumo:
For the chemical method of synthesis of co-precipitation were produced ferrite powders manganese-cobalt equal stoichiometric formula Mn (1-x) Co (x) Fe2O4, for 0 < x < 1, first reagent element using as the hydroxide ammonium and second time using sodium hydroxide. The obtained powders were calcined at 400 ° C, 650 ° C, 900 ° C and 1150 ° C in a conventional oven type furnace with an air atmosphere for a period of 240 minutes. Other samples were calcined at a temperature of 900 ° C in a controlled atmosphere of argon, to evaluate the possible influence of the atmosphere on the final results the structure and morphology. The samples were also calcined in a microwave oven at 400 ° C and 650 ° C for a period of 45 minutes possible to evaluate the performance of this type of heat treatment furnace. It was successfully tested the ability of this group include isomorphic ferrite with the inclusion of nickel cations in order to evaluate the occurrence of disorder in the crystalline structures and their changes in magnetic characteristics.To identify the structural, morphological, chemical composition and proportions, as well as their magnetic characteristics were performed characterization tests of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), thermogravimetric (TG), vibrating sample magnetometry (MAV) and Mössbauer spectroscopy. These tests revealed the occurrence of distortion in the crystal lattice, changes in magnetic response, occurrence of nanosized particles and superparamagnetism
Resumo:
Since the beginning of the National Program for Production and Use of Biodiesel in Brazil, in 2004, different raw materials were evaluated for biodiesel production, trying to combine the agricultural diversity of the country to the desire to reduce production coasts. To determine the chemical composition of biodiesel produced from common vegetables oils, international methods have been used widely in Brazil. However, for analyzing biodiesel samples produced from some alternative raw materials analytical problems have been detected. That was the case of biodiesel from castor oil. Due the need to overcome these problems, new methodologies were developed using different chromatographic columns, standards and quantitative methods. The priority was simplifying the equipment configuration, realizing faster analyses, reducing the costs and facilitating the routine of biodiesel research and production laboratories. For quantifying free glycerin, the ethylene glycol was used in instead of 1,2,4-butanetriol, without loss of quality results. The ethylene glycol is a cheaper and easier standard. For methanol analyses the headspace was not used and the cost of the equipment used was lower. A detailed determination of the esters helped the deeper knowledge of the biodiesel composition. The report of the experiments and conclusions of the research that resulted in the development of alternative methods for quality control of the composition of the biodiesel produced in Brazil, a country with considerable variability of species in agriculture, are the goals of this thesis and are reported in the following pages
Resumo:
Malaria, also popularly known as maleita , intermittent fever, paludism, impaludism, third fever or fourth fever, is an acute infectious febrile disease, which, in human beings, is caused by four species: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. Malaria, one of the main infectious diseases in the world, is the most important parasitoses, with 250 million annual cases and more than 1 million deaths per year, mainly in children younger than live years of age. The prophylactic and therapeutic arsenal against malaria is quite restricted, since all the antimalarials currently in use have some limitation. Many plant species belonging to several families have been tested in vivo, using the murine experimental model Plasmodium berghei or in vitro against P. falciparum, and this search has been directed toward plants with antithermal, antimalarial or antiinflammatory properties used in popular Brazilian bolk medicine. Studies assessing the biological activity of medicinal plant essential oils have revealed activities of interest, such as insecticidal, spasmolytic and antiplasmodic action. It has also been scientifically established that around 60% of essential oils have antifungal properties and that 35% exhibit antibacterial properties. In our investigation, essential oils were obtained from the species Vanillosmopsis arborea, Lippia sidoides and Croton zethneri which are found in the bioregion of Araripe-Ceará. The chemical composition of these essential oils was partially characterized and the presence of monoterpenes and sesquiterpenes. The acute toxicity of these oils was assessed in healthy mice at different doses applied on a single day and on four consecutive days, and in vitro cytotoxicity in HeLa and Raw cell lines was determined at different concentrations. The in vivo tests obtained lethal dose values of 7,1 mg/Kg (doses administered on a single day) and 1,8 mg/Kg (doses administered over four days) for 50% of the animals. In the in vitro tests, the inhibitory concentration for 50% of cell growth in Hela cell lines was 588 μg/mL (essential oil from C. zethneri after 48 h), from 340-555 μg/mL (essential oil from L. sidoides, after 24 and 48 h). The essential oil from V. arborea showed no cytotoxicity and none of the essential oils were cytotoxic in Raw cell lines. These data suggest a moderate toxicity in the essential XVIII oils under study, a finding that does not impede their testing in in vivo antimalarial assays. Was shown the antimalarial activity of the essential oils in mice infected with P. berghei was assessed. The three species showed antimalarial activity from 36%-57% for the essential oil from the stem of V. arborea; from 32%-82% for the essential oil from the leaves of L. sidoides and from 40%-70% of reduction for the essential oil from the leaves of C. zethneri. This is the first study showing evidence of antimalarial activity with these species from northeast Brazil. Further studies to isolate the active ingredients of these oils are needed to determine if a single active ingredient accounts for the antimalarial activity or if a complex integration of all the compounds present occurs, a situation reflected in their biological activity
Resumo:
The aim of the present study was to assess the effectiveness and adverse effects on dental enamel caused by nightguard vital bleaching with 10% carbamide peroxide. This was accomplished through the interaction of researchers from different areas such as dentistry, materials engineering and physics. Fifty volunteers took part in the doubleblind randomized controlled clinical trial. They were allocated to an experimental group that used Opalescence PF 10% (OPA) and a control group that used a placebo gel (PLA). Fragments of human dental enamel from the vestibular surface of healthy premolars, extracted for orthodontic reasons, were fixed to the vestibular surface of the first upper molars of the volunteers for in situ observation. Bleaching was performed at night for 21 days. The observation periods included Baseline (BL), T0 (21 days), T30 (30 days after treatment) and T180 (180 days after treatment, only for the OPA group). Tooth color was assessed by comparing it with the Vita® scale and by the degree of satisfaction expressed by the volunteer. We also assessed adverse clinical effects, dental sensitivity and gingival bleeding. The study of adverse effects on enamel was conducted in vivo and in situ, using the DIAGNOdent® laser fluorescence device to detect mineral loss. Scanning electron microscopy (SEM) was used to check for superficial morphological alterations, energy dispersive spectrophotometry (EDS) to semiquantitatively assess chemical composition using the Ca/P ratio, and the x-ray diffraction (XRD) technique to observe alterations in enamel microstructure. The results showed that nightguard vital bleaching with 10% carbamide peroxide was effective in 96% of the cases, versus 8% for the PLA group. Dental sensitivity was present in 36% (9/25) of the cases. There was no significant association between gingival bleeding and the type of gel used (p = 1.00). In vivo laser fluorescence analysis showed no difference in values for the control group, whereas in the OPA group there was a statistically significant difference between baseline values in relation to the subsequent periods (p<0.01), with lower mean values for post-bleaching times. There was a significant difference between the groups for times T0 and T30. Micrographic analysis showed no enamel surface alterations related to the treatment performed. No significant alteration in Ca/P ratio was observed in the OPA group (p = 0.624) or in the PLA group (p = 0.462) for each of the observation periods, nor between the groups studied (p=0.102). The XRD pattern for both groups showed the presence of three-phase Hydroxyapatite according to JCPDS files (9-0432[Ca5(PO4)3(OH)], 18-0303[Ca3(PO4)2.xH2O] and 25-0166[Ca5(PO4)3(OH, Cl, F)]). No other peak associated to other phases was found, independent of the group analyzed, which reveals there was no disappearance, nucleation or phase transformation. Neither was there any alteration in peak pattern location. With the methodology and protocol used in this study, nightguard vital bleaching with 10% carbamide peroxide proved to be an effective and safe procedure for dental enamel
Resumo:
The fat acid esters and tocopherolic derivatives are of great economic interest in many industries. The sunflower oil, which had its rich constitution in these composites, is a very interesting raw material source for the job in some sectors as bio-carburants, bio-lubrificants, bio-surfactants, dispersing agents, food industries, medicines and cosmetics. A system emulsified steady from this oil can wide be used in the therapeutical one, therefore it is of easy acceptance for the patient, for being pharmaceutical forms that allow a better medicine administration. The chemical composition characteristics, rich in unsaturad fat acid and tocopherolic derivatives, the sunflower oil, make of the emulsified systems contend this oil a proposal promising for formularizations of pharmaceutical and cosmetic use with antirust and photoprotection. The general objective of this work was to apply the HLB beddings to determine the sunflower oil critical HLB and, from this, to be able to evaluate the ideal mixture of the constituent of this system through the study of the ternary diagrams for the determination of the ratio of constituent that will generate the emulsion most steady
Resumo:
This study aimed to establish patterns of dynamics of litter and redistribution of rainfall of Caatinga vegetation. Sampling was done monthly for twenty three months in four areas: degraded, successional primary stage, secondary stage and late stage. We installed 72 collectors of 1.0 mx 1.0 m, with nylon fabric background in three areas. Litter deposited was fractionated into leaves, twigs, reproductive structures and miscellaneous, dried and weighed. To assess the stock of accumulated litter we used metal frame with dimensions of 0.5 mx 0.5 m, thrown randomly and collected monthly, taken to the laboratory for oven drying and weighed. To evaluate the decomposition, 40g of litter were placed in nylon bags (litterbags) mesh 1 mm ², dimensions 20.0 x 20.0 cm, being distributed on the soil surface and removed monthly, cleaned, dried and weighed. To evaluate the contribution of rainfall we used interceptometers installed 1.0 m above the ground surface, distributed under the canopy of six species of the caatinga, which evaluated the stemflow through collecting system installed around the stems of these species. The deposition of litter in the primary stage was 2.631,26 kg ha-1; 3.144,89 kg ha-1 in the secondary stage; 3.144,89 kg ha-1 in the late stage. The fraction of leaves was the largest contributor to the formation of litter in three stages. The degraded area showed greater accumulation of litter and decomposition has been sluggish during the dry period. We conclude that occurred greater litterfall in later stages. The late successional stage showed faster decomposition of litter, the evidence that is a better use of litter in nutrient cycling processes and incorporation of organic matter to the soil. The time required to decompose 50 % of the litter in the later stages of succession was lower indicating greater speed of release and reuse of nutrients by the vegetation. The specie jurema preta with less leaf area and consists of leaflets, showed greater internal precipitation in rain events of greater magnitude. The stemflow was not influenced by DAP and basal area. The water lost by trapping represented the largest proportion of total rainfall in all species studied
Resumo:
Currently there is still a high demand for quality control in manufacturing processes of mechanical parts. This keeps alive the need for the inspection activity of final products ranging from dimensional analysis to chemical composition of products. Usually this task may be done through various nondestructive and destructive methods that ensure the integrity of the parts. The result generated by these modern inspection tools ends up not being able to geometrically define the real damage and, therefore, cannot be properly displayed on a computing environment screen. Virtual 3D visualization may help identify damage that would hardly be detected by any other methods. One may find some commercial softwares that seek to address the stages of a design and simulation of mechanical parts in order to predict possible damages trying to diminish potential undesirable events. However, the challenge of developing softwares capable of integrating the various design activities, product inspection, results of non-destructive testing as well as the simulation of damage still needs the attention of researchers. This was the motivation to conduct a methodological study for implementation of a versatile CAD/CAE computer kernel capable of helping programmers in developing softwares applied to the activities of design and simulation of mechanics parts under stress. In this research it is presented interesting results obtained from the use of the developed kernel showing that it was successfully applied to case studies of design including parts presenting specific geometries, namely: mechanical prostheses, heat exchangers and piping of oil and gas. Finally, the conclusions regarding the experience of merging CAD and CAE theories to develop the kernel, so as to result in a tool adaptable to various applications of the metalworking industry are presented
Resumo:
Emerald mining is an important area of the economy in Brazil, country which is in second place among the exporting nations of this gem. Due to the process of extraction, a great amount of reject is generated. Since there is no appropriate destination, the reject is abandoned around the mining industries, contributing to environment degradation. Nowadays, some of the most relevant things to an industry in general are: energy conservation, cost reduction, quality and productivity enhancement. The production of isolating, transformed refractory materials achieves the sustainability dimension when protection of the environment is incorporated to such process. This work investigates the use of emerald mining rejects in the ceramic body of refractory materials, aiming at obtaining a product whose characteristics are compatible with commercial products and, at the same time, allow the use of such rejects to solve the environmental issue caused by its disposal in nature. X-ray fluorescence analysis show that the emerald reject obtained after the flotation to extract molybdenum and mica has 70% of silica and alumina (SiO2+Al2O3) and 21% of a basic oxides and alkaline metals and earthy alkaline mixture (Na2O, K2O, CaO e MgO). Because of the significant amount of silica and alumina present in the reject, four refractory ceramic bodies were prepared. Samples with a rectangular shape and dimensions 100x50x10 mm were pressed in a steel mold at 27,5 MPa and sintered at 1200ºC for 40 min. under environment atmosphere in a resistive oven. The sintered samples were characterized in relation to the chemical composition (FRX), mineralogical composition (DRX), microstructure (MEV) and physical and mechanical properties. The results indicate that the mixture with 45% of reject, 45% of alumina and 10% of kaolin presents a refractory quality of 1420ºC, dimensional linear variation below 2.00%, apparent specific mass of 1,56 g/cm3 and porosity of 46,68%, which demonstrates the potential use of the reject as raw material for the industry of isolating transformed refractory materials
Resumo:
The segment of the structural ceramics industry is one of the most important to the economy of Rio Grande do Norte. The supply chain makes a total of 206 companies that are distributed in 39 counties, concentrated in three regional centers: Seridó Apodi / Assu and great Natal. The ceramic industry in the state is around 80 million pieces per month, with 50,186 million of these tiles, which makes the Rio Grande do Norte one of the largest manufacturers of product in the Country. Different ceramic products can be manufactured by mixing two or more clays and accessory minerals. Mixtures acquire characteristics and form what is called the ceramic body. Refractory masses have a high melting point and thermal shock support. Its composition contains refractory clays with a little iron oxide and material fluxes. A line of semi-refractory ceramic products that stands out for its high added value are the bricks in ivory or red, used in building barbecues, fireplaces, wood stoves and braziers. The aim of this study was to use alumina-clay or silica- alumina-clay to the industrial RN, for the production of refractory bricks semi-refractory burning light. Clay and Kaolin were characterized for their chemical and mineralogical composition, immediately after ceramic bodies were made with different concentrations of the components, they were raised, pressed and sintered. After sintering the resulting products were characterized in terms of mechanical, thermal and dimensional than the characterization by X-ray diffraction and scanning electron microscopy. After obtaining the results, we concluded that the studied clay can be used for the production of semi-refractory bricks
Resumo:
At the cashew nut processing industry it is often the generation of wastewaters containing high content of toxic organic compounds. The presence of these compounds is due mainly to the so called liquid of the cashew nut (CNSL). CNSL, as it is commercially known in Brazil, is the liquid of the cashew nut. It looks like an oil with dark brown color, viscous and presents a high toxicity index due to the chemical composition, i.e. phenol compounds, such as anacardic acid, cardol, 2-methyl cardol and monophenol (cardanol). These compounds are bio resistant to the conventional treatments. Furthermore, the corresponding wastewaters present high content of TOC (total organic carbon). Therefore due to the high degree of toxicity it is very important to study and develop treatments of these wastewaters before discharge to the environmental. This research aims to decompose these compounds using advanced oxidative processes (AOP) based on the photo-Fenton system. The advantage of this system is the fast and non-selective oxidation promoted by the hydroxyl radicals (●OH), that is under determined conditions can totally convert the organic pollutants to CO2 and H2O. In order to evaluate the decomposition of the organic charge system samples of the real wastewater od a processing cashew nut industry were taken. This industry was located at the country of the state of Rio Grande do Norte. The experiments were carried out with a photochemical annular reactor equipped with UV (ultra violet) lamp. Based on preliminary experiments, a Doehlert experimental design was defined to optimize the concentrations of H2O2 and Fe(II) with a total of 13 runs. The experimental conditions were set to pH equal to 3 and temperature of 30°C. The power of the lamps applied was 80W, 125W and 250W. To evaluate the decomposition rate measures of the TOC were accomplished during 4 hours of experiment. According to the results, the organic removal obtained in terms of TOC was 80% minimum and 95% maximum. Furthermore, it was gotten a minimum time of 49 minutes for the removal of 30% of the initial TOC. Based on the obtained experimental results, the photo-Fenton system presents a very satisfactory performance as a complementary treatment of the wastewater studied
Resumo:
Pectinolytic enzymes, or simply pectinases, are complex enzymes that degrade pectic polymers. They have many uses, such as fruit juice extraction and purification, textile fiber treatment and vegetal oil extraction. The aim of this work was to study the kinetics of pectinases production by solid-state fermentation, using dry cashew apple residue as substrate and the microorganism Aspergillus niger CCT 0916. The influence of the initial medium moisture and medium supplementation with a source of nitrogen and phosphorus was evaluated using the factorial experimental planning and response surface methodology. Ammonia sulphate and potassium phosphate were used as nitrogen and phosphorus source, respectively. The variables time of contact (T) and ratio volume solvent/fermented medium (RZ), in systems with and without agitation, were evaluated in order to study the best extraction condition of the produced enzyme. Washed and unwashed cashew apple residues were tested as the growth medium. The unwashed residue was obtained by drying the residue after the extraction of the juice, while the washed residue was obtained by water washing 5 times using the proportion of 1 kg pulp/2 liters of water. Samples were taken every 12 hours for moisture content, pH, protein, reducing sugars, polygalacturonase activity (PG) and viscosity reduction. The physical-chemical composition of the residues had different sugar and pectin levels. For the unwashed residue, the peak activity was reached with 40% of initial moisture content, 1% of nitrogen supplementation without phosphorus addition after 30 hours of process. These conditions led to 16 U/g of PG activity and 82% of viscosity reduction. The calculated models reached similar values to the experimental ones in the same process conditions: 15.55 U/g of PG and 79.57% of viscosity eduction. Similarly, the greatest enzyme production for washed residue was reached with 40% initial moisture content, 1% nitrogen supplementation without phosphorus addition after 22 hours of cultivation. In this condition it was obtained polygalacturonase activity of 9.84 U/g and viscosity reduction of 81.36%. These values are close to experimental values that were of 10.1 U/g and 81%, respectively. The conditions that led to the best PG activity results was the agitated one and the best extraction condition was obtained with 100 minutes of solvent/medium contact and RZ of 5 (mL/g)
Resumo:
The simulation of SES-Natal Ponta Negra: mitigation of environmental risks and predictive maintenance strategy was developed in the context of several operational irregularities in the pumping stations and sewage systems in the system Ponta Negra. Thus, the environmental risks and complaints against the company due to overflows of sewage into the public thoroughfare became common. This neighborhood has shown in recent years an increase of resident higher than the initial expectation of growth. In this sense presumed the large population growth and generation of sewers higher than expected, associated to the use of corrective maintenance and misuse of the system may be the main causes of operational failures occurring in the SES. This study aimed at analyzing the hydraulic behavior of SES Ponta Negrathrough numerical simulation of its operation associated to future scenarios of occupation. The SES Ponta Negra has a long lengthof collection networks and 6 pumping stations interconnected, being EE 1, 2, 4 coastal way, and beach Shopping interconnected EE3 to receives all sewers pumped from the rest pumping station and pumped to the sewage treatment station of neighborhood which consists of a facultative pond followed by three maturation ponds with disposal of treated effluent into infiltration ditches. Oncethey are connected with each other, the study was conducted considering the days and times of higher inflow for all lifts. Furthermore, with the aim of measuring the gatherer network failures were conducted data survey of on the networks. Thephysical and operational survey data was conducted between January/2011 and janeiro/2012. The simulation of the SES was developed with the aim ofdemonstrating its functioning, eithercurrently and in the coming years, based in population estimates and sewage flow. The collected data represents the current framework of the pumping stations of the SES Ponta Negra and served as input to the model developed in MS Excel ® spreadsheet which allowed simulating the behavior of SES in future scenarios. The results of this study show thatBeach Shopping Pumping Station is actually undersized and presents serious functioning problemsthatmay compromise the environmental quality of surrounding area. The other pumping stations of the system will reach itsmaximum capacity between 2013 and 2015, although the EE1 and EE3 demonstrateoperation capacity, even precariously, until 2017. Moreover, it was observed that the misuse of the network system, due to the input of both garbage and stormwater, are major factors of failures that occur in the SES. Finally, it was found that the corrective maintenance appliance, rather than predictive,has proven to beinefficient because of the serious failuresin the system, causing damage to the environment and health risks to users
Resumo:
In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst