41 resultados para lignocellulosic wastes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades, the generation of solid and liquid waste has increased substantially due to increased industrial activity that is directly linked to economic growth. For that is the most efficient process, it is inevitable generation of such wastes. In the oil industry, a major waste generated in oil exploration is produced water, which due to its complex composition and the large amount generated, has become a challenge, given the restrictions imposed by environmental laws regarding their disposal, making if necessary create alternatives for reuse or treatment in order to reduce the content of contaminants and reduce the harmful effects to the environment. This water can be present in free form or emulsified with the oil, when in the form of an emulsion of oil-water type, it is necessary to use chemicals to promote the separation and flotation is the treatment method which has proved to be more efficient, for it can remove much of the emulsified oil when compared to other methods. In this context, the object of this work was to study the individual effects and interactions of some physicochemical parameters of operations, based on previous work to a flotation cell used in the separation of synthetic emulsion oil / water in order to optimize the efficiency of the separation process through of the 24 full factorial design with center point. The response variables to evaluate the separation efficiency was the percentage of color and turbidity removal. The independent variables were: concentration of de-emulsifying, oil content in water, salinity and pH, these being fixed, minimum and maximum limits. The analysis of variance for the equation of the empirical model, was statistically significant and useful for predictive purposes the separation efficiency of the floater with R2 > 90%. The results showed that the oil content in water and the interaction between the oil content in water and salinity, showed the highest values of the estimated effects among all the factors investigated, having great and positive influence on the separation efficiency. By analyzing the response surface was determined maximum removal efficiency above 90% for both measured for turbidity as a measure of color when in a saline medium (30 g/L), the high oil concentrations (306 ppm) using low concentrations of de-emulsifying (1,1 ppm) and at pH close to neutral

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disposal of sewage sludge is a growing problem face up to management of sanitary sevices. Otherwise, because its making process characteristic, the Ceramic Industry can tolerate the presence of this wastes as raw material. This study has as object to confirm the use of the sewage sluge in the Ceramic Industry like a sustentable alternative for its disposal. Futhermore, this study quests to evaluate the maximum proportion for incorporation of sludge wich result in technically and enviromentally suitable bricks. For found this proportion, the research consisted of (1) making of bricks in full scale, adde up 0%, 5%,10%, 15%, 20%, 25%,30%, 35% e 40% sludge, with size 220x105x45 mm, hand-molded by rammer and baked by industrial kiln; and (2) tecnical and enviromental evaluation of this bricks, according to Brazilian norms. The raw material uses were two distinct clays come from Goianinha/RN and sewage comes from a septic system tank and pumped into tank vehicle, of Natal/RN. The technical evaluation allowed to conclude the addiotion of the sludge brings about signifcant lost of mass and the water absorption grew up according to increase of sludge: every sludge-amended clay bricks absorved more water than control group. Thus, the compressive strength was signicantly decreased because the increase of sludge: bricks with 5% sludge added lost 45% of strength achieved at control group; the bricks made with 10 and 20% lost almost 70% of bigger strength. With up to 25% sludge added to the bricks, the streght decreased over 90%. Concerning heavy metal leaching, the two maximum proportion wich have tecnical approval, it means bricks sludge added with 15 and 20%, can say there is no risk of enviromental contamination using those bricks. This way, in this work context, it can to conclude the maximum proportion atends the technical and enviromental criterion is 20%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sludge of Wastewater Treatment Plants (WTPs) disposal is a problem for any municipality, for this reason the amount of sludge production is now a key issue in selecting treatment methods. It is necessary to investigate new applications for this waste type, due to the restrictions imposed by the environmental organs. The raw materials used in the Red Ceramic, are generally very heterogeneous, for this reason, such materials can tolerate the presence of different types of wastes. In Rio Grande do Norte, the roof tiles production corresponds to 60,61% from the total of ceramic units produced. Due to the importance of the ceramic industry of roof tiles for the state, allied to the environmental problem of the sludge disposal, this work had for objective to verify the possibility of the incorporation of sewage sludge in ceramic body used for production of roof tiles. In the research, sludge originating from drying beds of WTP of the Central Campus from UFRN and clays originating from a ceramic industry from Goianinha/RN were used. The raw materials were characterized by techniques of: analysis of particles distribution by diffraction to laser; real density; consistence limits; chemical analysis by X-ray fluorescence; mineralogical analysis by X-ray diffraction; organic matter; and solids content. Five batches of roof tiles were manufactured in the approximate dosages of 2%, 4%, 6%, 8% and 10%. To evaluate the properties of each final product, tests of water absorption, impermeability, bending strength, leachability and solubility were accomplished. The roof tiles manufactured with sludge presented characteristics similar to the roof tiles without sludge in relation to the environmental risk. The results showed that it is possible to use approximately up to 4% of sludge in ceramic bodies for production of roof tiles. However, it is observed that the high amount of organic matter (71%) present in the sludge is shown as factor that limits the sludge incorporation in ceramic bodies, worsening the quality of the roof tiles. It is necessary the use of mixtures of different raw materials under point of view of the granulometry and of the other chemical and mineralogical properties for the obtaining of a satisfactory mass to the production of ceramic roof tiles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Natal still dominates the use of individual disposal systems for domestic sewage, once only 29% of the city has a sewarage system. Wastes that are accumulated in these individual treatment systems should be exhausted periodically, service provided by collector entrepreneurs. Some of these companies causing major damage to the environment. In Natal, only two companies have their own septage (RESTI) treatment system, which were designed with parameters from domestic sewage generating strain and inefficient systems. Therefore, the characterization becomes essential as a source of parameters for their design. Thus, this work presents the physical-chemical and microbiological characterization of waste pumped from individual sewage treatment systems. Samples collections were made weekly from 5 different trucks at the reception point on the treatment plant on the point of the preliminary treatment. From each truck it was taken 5 samples during the discharge in order to make a composite sample. Afterwards, samples were carried out to laboratory and analyses for determination of temperature, pH, conductivity, BOD, COD, nitrogen (ammonia e organic), alkalinity, oils, phosphorus, solids, faecal coliforms and helminth egg. The results were treated as a single database, and ranked according to its generating source (multi and single house, lodging, health, services and / or food), area of origin (metropolitan, south and north) and type of system (cesspits, septic tank and / or sink). Through these data it was possible to verify that the type of system adopted by most in Natal and the metropolitan region is cesspit, besides to confirm the difference between the septage of areas with a population have different social and economical characteristics. It was found that the septage have higher concentrations than domestic sewage, except for thermotolerant coliforms that showed concentrations of 1,38E+07. Among the parameters studied, is the median values identified for COD (3,549 mg / L), BOD (973mg / L) and total solids (3.557mg / L). The volatile fraction constitutes about 70% of the total solids of the septage. For helminths has been a median of 7 eggs/L. In general, the characteristics of the waste followed the variability found in the literature reviewed for all variables, showing high amplitudes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Natal/RN, 68% of the population uses some kind of individual system for their domestic sewers treatment, being that the most used it is septic tank, followed by sumidouro. Every treatment system of sewers, usually used, generates a by-product denominated sludge. That residue presents some components, in its constitution, undesirable under the environmental and sanitary point of view. In such case, to assure that the system treatment has satisfactory results, it is necessary to do the adjusted disposition of the sludge sewage. Several countries are looking for technical alternatives for the use and disposition of residues. Under technical and environmental conditions appropriate, these materials can be used, decreasing the consumption of the natural resources and the treatment need, storage or elimination of the wastes, what decrease the risks created. Some of the alternatives of recycling of the sludge sewage are: the application in the agriculture, in the production of energy and as raw material in the civil construction. This study evaluated asphalt mixtures behavior that partially substituted conventional aggregates by septic tank sludge. The septic tank sludge gave origin to two raw materials called raw sludge and sludge ash. The raw sludge was put as a small aggregate and the sludge ash as filler. In the first experiment it was made a comparison between the mixture with conventional aggregates and the mixtures that replaced sand by raw sludge in the proportions from 5% to 40%. In the second experiment, it was made comparison between mixtures with 1%, 2% and 3% of sludge ash and cement. The stages developed along the study were: physical characterization of the conventional materials; physical, chemistry, thermal, mineralogical characterizations and analysis of environmental risk of the raw sludge; physical characterization and analysis of environmental risk of the sludge ash; analysis of the mixtures performance through its volumetric and mechanical characteristics; forecast of the mixtures susceptibility in the moisture presence. For the grain size composition used and with the percentage asphalt adopted, the mixtures with up to 7,5% of raw sludge in his composition attend to the National Department of Transports Infrastructure (DNIT) specifications. However, in agreement with the mixtures susceptibility in the moisture presence, the mixtures with addition of raw sludge don't present satisfactory acting. In such case, they could be used in arid and semi-arid areas. The raw sludge application in mixtures increased their voids volume and their stability. However, it damaged mixtures adhesiveness. Mixtures with sludge ash and with cement presented similar behavior. However, mixtures with sludge ash presented a better performance than mixtures with cement as for their stability and their tensile strength ratio. The mixture with 1% of sludge ash is better. The wastes studied don't represent environmental risk

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental management in the health establishments is a reality still little explored in the health sector in Brazil, especially concerning its wastes. The management of wastes of health services is established in the valid legislation through the National Council of Environment and Sanitary Vigilance Agency (358/2005 and 304/2004 respectively). The present work is about a descriptive work about the environmental health in the health services. The used criterion was to diagnose the environmental management in twelve establishments of health inserted in the three levels of complexity of the Unique Health System (Sistema Ùnico de Saúde SUS). Among the sub criteria used the waste management is the one of bigger concern. The one referring to the water quality is considered good. The analysis of data reveals that 66% of the establishments got a poor environmental ranking, 17% critical and 17% appropriate, showing that the health establishments in the three levels of complexity of the SUS need urgent structural, environmental and educational interventions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, as well as in the past decades, the dumping of biodegradable organic waste in landfill is common practice in Brazil, as well as in most parts of the world. Nevertheless due to its rapid decomposition and release of odors, this practice hamper’s the operation and implementation of a recycling system. These facts encouraged our research to find an efficient system for the management of organic waste, not only for the use of official workers responsible for managing these wastes, but also for non-governmental institutions. The Recycling for Life Community Association – ACREVI (Associação Comunitária Reciclando para a Vida), together with the municipal authorities of Mossoró-RN, Brazil, have assumed the social role of collecting and recycling solid waste produced by most of the local population. However, it was observed that the organic waste it collected was not receiving any treatment. This present work aims to make compost with mixed waste (green waste and organic household), and then do chemical analysis of the material in view to use the waste as organic fertilizer. The objective being: to share the knowledge acquired by putting it into a very simple language accessible to people with little education. The experiment was conducted at ACREVI, Mossoró (RN), and the compost was obtained following the method "windrow", forming three cells (I, II, III) with conical shape, dimensions of 1.6 meters and 2.0 meters in diameter for cells I and II, and 1.0 meters high and 2.0 meters in diameter for cell III. The process was accompanied by analysis: CHN elemental, a variation of cell temperature, humidity, pH, TKN, bulk density, nutrients and heavy metals. Stabilized organic compounds reached the C/N ratio of 10.4/1 cell I and 10.4/1 in the cell II in the cell, showing how good soil conditions, with potential to improve the physical properties of any soil and pH acid soils, has presented the cell III at the end of the process the C/N 26/1, is a high ratio may be associated with the stack size III, thus changing the optimal conditions for the occurrence of the process. The levels of heavy metals in the analyzed compounds were lower than those established by the SDA normative instruction, Nº 27, of 5 June, 2006. The use of pruning trees and grass are used in small-scale composting, while generating a quality compost in the final process, it also created an important condition for a correct sizing of the composting piles. Under the studied conditions it is not advisable to use cells with a height of 1.00 m in height and 2.00 m in diameter, as these do not prevent the rapid dissipation of heat and thus can not be a good product at the end of composting. The composting process in the shed of the association and the preparation of the primer enabled the development of an alternative technology to generate income for members of ACREVI.