52 resultados para estimulação térmica
Resumo:
The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition
Resumo:
Sweeteners provide a pleasant sensation of sweetness that helps the sensory quality of the human diet, can be divided into natural sweeteners such as fructose, galactose, glucose, lactose and sucrose, and articial sweeteners such as aspartame, cyclamate and saccharin. This work aimed to study the thermal stability of natural and artificial sweeteners in atmospheres of nitrogen and syntetic air using thermogravimetry (TG), derivative thermogravimetry (DTG), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). Among the natural sweeteners analyzed showed higher thermal stability for the lactose and sucrose, which showed initial decomposition temperatures near 220 ° C, taking advantage of the lactose has a higher melting point (213 ° C) compared to sucrose (191 ° C). The lower thermal stability was observed for fructose, it has the lowest melting point (122 °C) and the lower initial decomposition temperature (170 °C). Of the artificial sweeteners studied showed higher thermal stability for sodium saccharin, which had the highest melting point (364 ° C) as well as the largest initial decomposition temperature (466 ° C under nitrogen and 435 ° C in air). The lower thermal stability was observed for aspartame, which showed lower initial decomposition temperature (158 ° C under nitrogen and 170 ° C under air). For commercial sweeteners showed higher thermal stability for the sweeteners L and C, which showed initial temperature of thermal decomposition near 220 ° C and melting points near 215 ° C. The lower thermal stability was observed for the sweetener P, which showed initial decomposition temperature at 160 ° C and melting point of 130 °C. Sweeteners B, D, E, I, J, N and O had low thermal stability, with the initial temperature of decomposition starts near 160 °C, probably due to the presence of aspartame, even if they have as the main constituent of the lactose, wich is the most stable of natural sweeteners. According to the results we could also realize that all commercial sweeteners are in its composition by at least a natural sweeteners and are always found in large proportions, and lactose is the main constituent of 60% of the total recorded
Resumo:
This work aims to study the effects of adding antioxidants, such as, α- tocopherol and BHT on the thermal and oxidative stability of biodiesel from cottonseed (B100). The Biodiesel was obtained through the methylical and ethylical routes. The main physical and chemical properties of cotton seed oil and the B100 were determined and characterized by FTIR and GC. The study of the efficiency of antioxidants, mentioned above, in concentrations of 200, 500, 1000, 1500, 2000ppm, to thermal and oxidative stability, was achieved by Thermogravimetry (TG), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Differential Scanning Calorimetry - Hi-Pressure (P-DSC) and Rancimat. The Biodiesel obtained are within the specifications laid down by Resolution of ANP No7/2008. The results of TG curves show that the addition of both antioxidants, even in the lowest concentration, increases the thermal stability of Biodieseis. Through the DTA and DSC it was possible to study the physical and chemical transitions occurred in the process of volatilization and decomposition of the material under study. The initial time (OT) and temperature (Tp) of oxidation were determined through the P-DSC curve and they showed that the α-tocopherol has a pro-oxidant behavior for some high concentrations. The BHT showed better results than the α-tocopherol, with regard to the resistance to oxidation
Resumo:
The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41
Resumo:
In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR
Resumo:
We report a theoretical investigation of thermal hysteresis in magnetic nanoelements. Thermal hysteresis originates in the existence of meta-stable states in temperature intervals which may be tuned by small values of the external magnetic field, and are controlled by the systems geometric dimensions as well as the composition. Two systems have been investigated. The first system is a trilayer consisting of one antiferromagnetic MnF2 film, exchange coupled with two Fe lms. At low temperatures the ferromagnetic layers are oriented in opposite directions. By heating in the presence of an external magnetic field, the Zeeman energy induces a gradual orientation of the ferromagnets with the external field and the nucleation of spin- op-like states in the antiferromagnetic layer, leading eventually, in temperatures close to the Neel temperature, to full alignment of the ferromagnetic films and the formation of frustrated exchange bonds in the center of the antiferromagnetic layer. By cooling down to low temperatures, the system follows a different sequence of states, due to the anisotropy barriers of both materials. The width of the thermal hysteresis loop depends on the thicknesses of the FM and AFM layers as well as on the strength of the external field. The second system consists in Fe and Permalloy ferromagnetic nanoelements exchange coupled to a NiO uncompensated substrate. In this case the thermal hysteresis originates in the modifications of the intrinsic magnetic
Resumo:
This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation
Resumo:
Theta rhythm consists of an electrophysiological hippocampal oscillation present in mammalian species (4-12 Hz with variations across species). This oscillation is present during active waking and is also prevalent in local field potentials (LFP) during rapid eye movement sleep (REM sleep). Several studies have shown that theta rhythm is important in cognitive tasks and that the medial septum is a key region for its occurrence. The septum sends cholinergic, GABAergic and glutamatergic projections to the hippocampus, which in turn projects axons to the septum. Besides the septum, other regions are involved in regulating theta rhythm, forming a complex network of interactions among brain areas that result in theta rhythm. Optogenetics is a recently developed method that has been widely used in various research areas. It allows us to manipulate the electrical activity of neurons through light stimulation. One of the existing techniques consists in using a viral vector to induce the neuronal expression of ion channels associated with the light-sensitive molecule rhodopsin (e.g. ChR2). Once infected, the neurons become sensitive to light of a particular wavelength. The present M. Sc. research aimed to perform luminous stimulation of the brain in anesthetized and freely behaving animals using chronically implanted electrodes and optical fibers in animals infected with a viral vector for ChR2 expression. Surgical viral injections were performed in the medial septum; histological results confirmed the expression of ChR2 by way of the presence of the eYFP reporter protein in the septum and also in hippocampal processes. Moreover, we performed acute experiments with luminous stimulation of the medial septum and LFP recordings of the septum and hippocampus of anesthetized animals. Action potentials were recorded in the septum. In these experiments we observed a significant increase in the firing rates of septal neurons during luminous stimulation (n = 300 trials). Furthermore, we found an early light-evoked response in the hippocampal LFP. Chronic experiments with luminous stimulation of the medial septum and hippocampus in freely behaving animals were also performed in combination with LFP recordings. We found that the luminous stimulation of the septum is able to induce theta rhythm in the hippocampus. Together, the results demonstrate that the luminous stimulation of the medial septum in optogenetically-modified animals causes relevant electrophysiological changes in the septum and the hippocampus.
Resumo:
In this work, composites were prepared using high energy mechanical milling from the precursors hydroxyapatite - HAp (Ca10(PO4)6(OH)2) and metallic iron ( -Fe ). The main goal here is to study composites in order to employ them in magnetic hyperthermia for cancer therapy. The produced samples were characterized by X-ray di raction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), magnetization curves as a function of applied eld (MxH), and nally measurements of magnetic hyperthermia. The XRD patterns of the milled samples HAp/Fe revealed only the presence of precursor materials. The SEM showed clusters with irregular shapes. The magnetization curves indicated typical cases of weak ferromagnetic behavior. For samples submitted to grinding and annealing, the identi ed phases were: HAp (Ca10(PO4)6(OH)2), hematite (Fe2O3) and Calcium Iron Phosphate (Ca9Fe(PO4)7). Analyzing the results of MxH, there was a reduction of the saturation magnetization, given that the Fe was incorporated into HAp. Hysteresis curves obtained at 300 K are characteristics of samples possessing over a phase. At 77 K, the behavior of the hysteresis curve is in uenced by the presence of hematite, which is antiferromagnetic. Already at T = 4.2 K, it is observed a weak ferromagnetic behavior. Furthermore, there is the e ect of exchange bias. Regarding the magnetic hyperthermia, the results of temperature measurements as a function of the alternating eld are promising for applications in magnetic hyperthermia and other biomedical applications.
Resumo:
Parkinson disease (PD) is associated with motor symptoms and dopaminergic cell loss in the nigrostriatal pathway. Alpha-synuclein is the major component of the Lewy bodies, the biological hallmarks of disease, and has been associated with familial cases of PD. Recently, the spinal cord stimulation (SCS) showed to be effective to alleviate the Parkinson symptoms in animal models and human patients. In this project, we characterized the motor and electrophysiological effects of alpha-synuclein overexpression in the substantia nigra of rats. We further investigated the effects of spinal electrical stimulation, AMPT and L-dopa administration in this model. Method: Sprague-Dawley rats were injected with empty viral vector or the vector carrying the gene for alpha-synuclein in the substantia nigra, and were tested weekly for 10 weeks in the open field and cylinder tests. A separated group of animals implanted with bilateral electrode arrays in the motor cortex and the striatum were recorded in the open field, during the SCS sessions and the pharmacological experiments. Results: Alpha-synuclein expression resulted in motor asymmetry, observed as the reduction in use of contralateral forepaw in the cylinder test. Animals showed an increase of local field potential activity in beta band three and four weeks after the virus injection, that was not evident after the 5th week. AMPT resulted in a sever parkinsonian state, with reduction in the locomotor activity and significant peak of oscillatory activity in cortex and striatum. SCS was effective to alleviate the motor asymmetry at long term, but did not reduce the corticostriatal low frequency oscillations observed 24 hs after the AMPT administration. These oscillations were attenuated by L-dopa that, even as SCS, was not effective to restore the locomotor activity during the severe dopaminergic depletion period. Discussion: The alpha-synuclein model reproduces the motor impairment and the progressive neurodegenerative process of PD. We demonstrated, by the first time, that this model also presents the increase in low frequency oscillatory activity in the corticostriatal circuit, compatible with parkinsonian condition; and that SCS has a therapeutic effect on motor symptom of this model.
Resumo:
The soil heat flux and soil thermal diffusivity are important components of the surface energy balance, especially in ar id and semi-arid regions. The obj ective of this work was to carry out to estimate the soil heat flux from th e soil temperature measured at a single depth, based on the half-order time derivative met hod proposed by Wang and Bras (1999), and to establish a method capable of es timating the thermal diffusivity of the soil, based on the half order derivative, from the temporal series of soil temperature at two depths. The results obtained in the estimates of soil heat flux were compared with the values of soil heat flux measured through flux plates, and the thermal di ffusivity estimated was compared with the measurements carried out in situ. The results obtained showed excellent concordance between the estimated and measured soil heat flux, with correlation (r), coeffici ent of determination (R 2 ) and standard error (W/m 2 ) of: r = 0.99093, R 2 = 0.98194 and error = 2.56 (W/m 2 ) for estimated period of 10 days; r = 0,99069, R 2 = 0,98147 and error = 2.59 (W/m 2 ) for estimated period of 30 days; and r = 0,98974, R 2 = 0,97958 and error = 2.77 (W/m 2 ) for estimated period of 120 days. The values of thermal di ffusivity estimated by the proposed method showed to be coherent and consis tent with in situ measured va lues, and with the values found in the literature usi ng conventional methods.
Resumo:
The soursop (A. muricata) is a fruit rich in minerals especially the potassium content. The commercialization of soursop in natura and processed has increased greatly in recent years. Drying fruit pulp in order to obtain the powdered pulp has been studied, seeking alternatives to ensure the quality of dehydrated products at a low cost of production. The high concentration of sugars reducing present in fruits causes problems of agglomeration and retention during fruit pulp drying in spouted bed dryers. On the other hand in relation to drying of milk and fruit pulp with added milk in spouted bed, promising results are reported in the literature. Based on these results was studied in this work drying of the pulp soursop with added milk in spouted bed with inert particles. The tests were based on a 24 factorial design were evaluated for the effects of milk concentration (30 to 50% m/m), drying air temperature (70 to 90 °C), intermittency time (10 to 14 min), and ratio of air velocity in relation to the minimum spout (1.2 to 1.5) on the rate of production, of powder moisture, yield, rate of drying and thermal efficiency of the process. There were physical and chemical analysis of mixtures, of powders and of mixtures reconstituted by rehydration powders. Were adjusted statistical models of first order to data the rate of production, yield and thermal efficiency, that were statistically significant and predictive. An efficiency greater than 40% under the conditions of 50% milk mixture, at 70 ° C the drying air temperature and 1.5 for the ratio between the air velocity and the minimum spout has been reached. The intermittency time showed no significant effect on the analyzed variables. The final product had moisture in the range of 4.18% to 9.99% and water activity between 0.274 to 0.375. The mixtures reconstituted by rehydration powders maintained the same characteristics of natural blends.
Resumo:
The use of composite materials for the construction industry has been the subject of numerous scientific papers in Brazil and in the world. One of the factors that motivate this quest is the housing deficit that countries especially the third world face. In Brazil this deficit reaches more than 6.5 million homes, around 12% of all US households . This paper presents a composite that was obtained from waste generated in processes for the production of granite and marble slabs, cement, gypsum, sand, crushed EPS and water. These wastes cause great damage to the environment and are thrown into landfi lls in bulk. The novelty of the work is in the combined study thermal, mechanical and acoustic composite obtained in real situation of rooms that are part of an experimental housing. Many blocks were made from cement compositions, plaster, foam, sand, marb le and / or granite, preliminary tests of mechanical and thermal resistance were made by choosing the most appropriate proportion. Will be given the manufacturing processes and assembly units 500 units 10 x 80 x 28 cm produced for the construction of an ex perimental home. We studied what kind of block and residue, marble or granite, made it more feasible for the intended purpose. The mechanical strength of the produced blocks were above 3.0 MPa. The thermal resistance of the blocks was confirmed by the maxi mum temperature difference between the inner and outer walls of rooms built around 8.0 ° C. The sound absorption for optimal room was around 31%. Demonstrated the feasibility of using the blocks manufactured with composite material proposed for construction.
Resumo:
Introduction: Transcranial Direct Current Stimulation (tDCS) has been used in studies for the treatment of chronic pain, but their effects on the autonomic nervous system (ANS) are non-existent. Therefore, the need for studies is of fundamental importance, as these individuals have autonomic imbalance and the intensity of this is dependent on the degree and level of injury. Objective: We investigated the effect of tDCS on the ANS in people with spinal cord injury (SCI) with different degrees and levels of injury. Methods: Randomized, placebo-controlled, double-blind, applied anodal tDCS or sham on the primary motor cortex (M1), bilaterally. The subjects (lower incomplete injury, n = 7; lower complete injury, n = 9; and high complete thoracic injury, n = 3) visited the laboratory three times and received active or sham tDCS for 13min. The heart rate variability (HRV) was measured before, during and after stimulation and analyzed the variables LF, HF and LF / HF. Results: The tDCS modulated the ANS in different ways among the groups. In individuals with SCI high complete thoracic the tDCS did not change the HRV. However, for individuals with SCI low incomplete, tDCS changed the HRV in order to increase sympathetic (LF, p = 0.046) and reduced parasympathetic (HF, p = 0.046). For individuals SCI low complete to tDCS changed the HRV reduction sympathetic (LF, p = 0.017) and increased parasympathetic (HF, p = 0.017). Conclusions: The present study suggests that anodal tDCS applied on the motor cortex bilaterally could modulate the ANS balance in people with spinal cord injury and that this effect is dependent on the degree and level of injury.
Resumo:
A practical approach to estimate rock thermal conductivities is to use rock models based just on the observed or expected rock mineral content. In this study, we evaluate the performances of the Krischer and Esdorn (KE), Hashin and Shtrikman (HS), classic Maxwell (CM), Maxwell-Wiener (MW), and geometric mean (GM) models in reproducing the measures of thermal conductivity of crystalline rocks.We used 1,105 samples of igneous and metamorphic rocks collected in outcroppings of the Borborema Province, Northeastern Brazil. Both thermal conductivity and petrographic modal analysis (percent volumes of quartz, K-feldspar, plagioclase, and sum of mafic minerals) were done. We divided the rocks into two groups: (a) igneous and ortho-derived (or meta-igneous) rocks and (b) metasedimentary rocks. The group of igneous and ortho-derived rocks (939 samples) covers most the lithologies de_ned in the Streckeisen diagram, with higher concentrations in the fields of granite, granodiorite, and tonalite. In the group of metasedimentary rocks (166 samples), it were sampled representative lithologies, usually of low to medium metamorphic grade. We treat the problem of reproducing the measured values of rock conductivity as an inverse problem where, besides the conductivity measurements, the volume fractions of the constituent minerals are known and the effective conductivities of the constituent minerals and model parameters are unknown. The key idea was to identify the model (and its associated estimates of effective mineral conductivities and parameters) that better reproduces the measures of rock conductivity. We evaluate the model performances by the quantity that is equal to the percentage of number of rock samples which estimated conductivities honor the measured conductivities within the tolerance of 15%. In general, for all models, the performances were quite inferior for the metasedimentary rocks (34% < < 65%) as compared with the igneous and ortho-derived rocks (51% < < 70%). For igneous and ortho-derived rocks, all model performances were very similar ( = 70%), except the GM-model that presented a poor performance (51% < < 65%); the KE and HS-models ( = 70%) were slightly superior than the CM and MW-models ( = 67%). The quartz content is the dominant factor in explaining the rock conductivity for igneous and ortho-derived rocks; in particular, using the MW-model the solution is in practice vi UFRN/CCET– Dissertação de mestrado the series association of the quartz content. On the other hand, for metasedimentary rocks, model performances were different and the performance of the KEmodel ( = 65%) was quite superior than the HS ( = 53%), CM (34% < < 42%), MW ( = 40%), and GM (35% < < 42%). The estimated effective mineral conductivities are stable for perturbations both in the rock conductivity measures and in the quartz volume fraction. The fact that the metasedimentary rocks are richer in platy-minerals explains partially the poor model performances, because both the high thermal anisotropy of biotite (one of the most common platy-mineral) and the difficulty in obtaining polished surfaces for measurement coupling when platyminerals are present. Independently of the rock type, both very low and very high values of rock conductivities are hardly explained by rock models based just on rock mineral content.