79 resultados para eficiência de remoção
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
The principal effluent in the oil industry is the produced water, which is commonly associated to the produced oil. It presents a pronounced volume of production and it can be reflected on the environment and society, if its discharge is unappropriated. Therefore, it is indispensable a valuable careful to establish and maintain its management. The traditional treatment of produced water, usualy includes both tecniques, flocculation and flotation. At flocculation processes, there are traditional floculant agents that aren’t well specified by tecnichal information tables and still expensive. As for the flotation process, it’s the step in which is possible to separate the suspended particles in the effluent. The dissolved air flotation (DAF) is a technique that has been consolidating economically and environmentally, presenting great reliability when compared with other processes. The DAF is presented as a process widely used in various fields of water and wastewater treatment around the globe. In this regard, this study was aimed to evaluate the potential of an alternative natural flocculant agent based on Moringa oleifera to reduce the amount of oil and grease (TOG) in produced water from the oil industry by the method of flocculation/DAF. the natural flocculant agent was evaluated by its efficacy, as well as its efficiency when compared with two commercial flocculant agents normally used by the petroleum industry. The experiments were conducted following an experimental design and the overall efficiencies for all flocculants were treated through statistical calculation based on the use of STATISTICA software version 10.0. Therefore, contour surfaces were obtained from the experimental design and were interpreted in terms of the response variable removal efficiency TOG (total oil and greases). The plan still allowed to obtain mathematical models for calculating the response variable in the studied conditions. Commercial flocculants showed similar behavior, with an average overall efficiency of 90% for oil removal, however it is the economical analysis the decisive factor to choose one of these flocculant agents to the process. The natural alternative flocculant agent based on Moringa oleifera showed lower separation efficiency than those of commercials one (average 70%), on the other hand this flocculant causes less environmental impacts and it´s less expensive
Resumo:
Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter
Resumo:
The contamination of water sources of public drinking by waste originated by anthropogenic activities has brought various risks to human health. Among the consequences of such activities can highlight the bloom of microalgae and cyanobacteria, which have the potential to produce toxins dangerous to humans, and the presence of humic substances that are generated by the decomposition of natural organic matter (NOM), such as vegetation. When found in water sources for public supply, present negative aspects conferring high color, odor and taste. The double filtration technology has good efficiency in water with the presence of cyanobacteria and different quality variations. Therefore, this study aimed to evaluate the behavior of the technique of double filtration with pre-oxidation for water purifiers the lagoon of Extremoz-RN, which currently has high concentrations of cyanobacteria. The research is summarized in four phases: the first phase turned to static tests in jarteste equipment in the laboratory and subsequent phases were tested in the Pilot Plant of Double Filtration. For the second and third stage filtration rates were tested filtration rates of 120 and 180 m3 / m2 .day for ascending boulders filters and 160 and 240 m3 / m2 .day in the filters in quick sand descendants. The last phase aimed to evaluate the double filtration with pre-oxidation. The results demonstrated that the system could produce double filtration in all trials of good quality water according to the Decree nº. 2914/11 of the Ministry of Health. The use of preoxidation favored the removal of microcystin and color at the end of the tests, reaching a percentage of color removal around 60%. The analysis of variance in the data, enabled prove that the filtration rates of 180 m3 / m2.d the gravel filter and 240 m3 /m2 .d in rapid filters, were the most significant for the removal of turbidity. The ascending filter of boulder 4 with particle size finer filter layer showed the best performance and the best means of turbidity and apparent color. The rapid filter downward 1 was more efficient in removing turbidity reaching removal about 100%
Resumo:
Stabilization ponds are biological treatment systems in that stabilization of organic matter is performed by the bacterial oxidation and / or reduction of photosynthetic algae. This study aimed to monitor and evaluate the efficiency of stabilization ponds in the Rio Grande do Norte State. Collections were made of the treated effluent, made directly in the output boxes of facultative lagoons and maturation (M1 and M2) and raw sewage (EB) that arrived at the stations. The variables analyzed were: pH, temperature, dissolved oxygen, total suspended solids, chlorophyll "a", apparent color, total phosphorus, organic nitrogen, ammonia nitrogen, Kjeldahl nitrogen, turbidity, cyanobacteria density and concentrations of microcystin. Variance analysis (ANOVA one way) observing the premises using the Tukey test, so as to check differences between treatments. The evaluate the stations found to COD removals in the bands of 48,8% (Pipa) to 75,8% (Caiçara Rio do Vento) and 57,5% (Pipa) to 83,0% (Santo Antônio), respectively. The mean concentrations of cyanobacteria varied from LFs density of 62,545 cels.mL-1 (Pedro Velho Roça) cels.mL-1 to 2,669,048 (Ponta Negra), while the final effluent showed range between 9,072 Cels.mL- 1 (Pedro Velho Roça) to 1,899,981 cels.mL-1 (Macau – Ilha de Santana) and the average concentrations of microcystin the final effluent ranged from 0.02 μg.L-1 (Ponta Negra) to 0.15 μg.L-1 (Macau – Ilha de Santana) at the studied the stations.
Resumo:
This paper proposed the study of the treatment of a synthetic wastewater contaminated with BTX by electro-oxidation batch with the anode of Ti/PbO2, and the adsorption of BTX using expanded perlite as adsorbent material, and to evaluate the best operating conditions both methods in order to perform a sequential treatment (adsorption and electro-oxidation) and achieve greater efficiency in the removal of the compounds. The operating conditions were measured: temperature, current density and applied amount of the adsorbent material, by UV-VIS analysis and Demand Chemical oxygen demand (COD). According to the experimental results, the electro-oxidative treatment was efficient in the degradation of the compounds BTX (benzene, toluene and xylenes) in synthetic sewage due to the electrochemical properties of the anode of Ti/PbO2. The applied current density and temperature promoted increased efficiency of COD removal, reaching obtain percentages greater than 70%. In the adsorption process, the temperature increase was not a factor in the removal of organic matter, while the increase in the amount of adsorbent material led to an increase in the percentage removal, obtaining 66.30% using 2 g of adsorbent. The selected operating conditions of both treatments performed separately take into account the removal efficiency of organic matter, and the low energy consumption and operating costs, so the sequential treatment were satisfactory reaching 87.26% of COD removal using adsorption as a pretreatment. Quantification of BTX through the analysis of gas chromatography at the end of the treatments also confirmed the removal efficiency of organic compounds, giving outstanding advantages to sequential treatment.
Resumo:
The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.
Resumo:
Electrochemical technologies have been proposed as a promising alternative for the treatment of effluents and contaminated soils. Therefore, the objective of this work was to study the treatment of contaminated soils and wastewaters using electrochemical technologies. Thus, the study regarding the scale-up of the electrochemical system with continuous flow treatment of wastewater of the petrochemical industry was investigated using platinum electrodes supported on titanium (Ti / Pt), and boron-doped diamond (BDD). The results clearly showed that under the operating conditions studied and electrocatalytic materials employed, the better removal efficiency was achieved with BDD electrode reducing the chemical oxygen demand (COD) from 2746 mg L-1 to 200 mg L-1 in 5 h consuming 56.2 kWh m-3 . The decontamination of soils and effluents by petrochemical products was evaluated by studying the effects of electrokinetic remediation for removal of total petroleum hydrocarbons (HTP) from contaminated soil with diesel. The efficiency of this process was dependent on the electrolyte used Na2SO4 (96.46%), citric acid (81.36%) and NaOH (68.03%) for 15 days. Furthermore, the effluent after treatment of the soil was treated by electrochemical oxidation, achieving a good elimination of the organic polluting load dissolved. Depending on the physical behavior of wastewater contaminated with oil (emulsified state); atrazine emulsified effluents were investigated. The main characteristics of the effluent produced during the washing of contaminated soil were studied, being dependent on the surfactant dosage used; which determined its electrolytic treatment with BDD. The electrochemical oxidation of emulsified effluent of atrazine was efficient, but the key to the treatment is reducing the size of micelles.
Resumo:
The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.
Resumo:
The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.
Resumo:
The effluents released by the textile industry have high concentrations of alkali, carbohydrates, proteins, in addition to colors containing heavy metals. Therefore, a filter was prepared aiming primarily to the removal of color. In order to prepare this filter, rice hulls and diatomite were used, which have in their structure, basically amorphous hydrated silica. The silica exists in three crystalline forms: quartz, tridymite and cristobalite. In accordance with the above considerations, this study was divided into two stages; the first corresponds to the preparation of the filter and the second to carry out the tests in the effluent/filter in order to verify the efficiency of the color removal. First, the raw material was subjected to a chemical analysis and XRD, and then the diatomite was mixed, via humid, with a planetarium windmill with 20 %, 40 %, 60 % and 80 % of rice husk ash. To the mixture, 5 % carboxymethylcellulose (CMC) was added as a binder at room temperature. The samples were uniaxially compacted into metallic matrix of 0.3 x 0.1 cm² of area at a pressure of 167 MPa by means of hydraulic press and then sintered at temperatures of 1,000 °C, 1,200 °C and 1,400 °C for 1 h and submitted to granulometry test using laser, linear retraction, water absorption, apparent porosity and resistance to bending, DTA, TMA and XRD. To examine the pore structure of the samples scanning electron microscope (SEM) was used. Also tests were carried out in a mercury porosimeter to verify the average size of the pores and real density of the samples. In the second stage, samples of the effluent were collected from a local industry, whose name will be preserved, located in Igapó, in the State of Rio Grande do Norte - RN. The effluent was first pretreated before filtration and then subjected to a treatment of flotation. The effluent was then characterized before and after filtration, with parameters of color, turbidity, suspended solids, pH, chemical and biochemical oxygen demand (COD and BOD). Thus, through the XRD analysis the formation of cristobalite α in all samples was observed. The best average size of pore was found to be 1.75 μm with 61.04 % apparent porosity, thus obtaining an average 97.9 % color removal and 99.8 % removal of suspended solid
Resumo:
Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc
Resumo:
The technology of anaerobic reactors for sanitary wastewater treatment has been extensively developed in Brazil, and today it is practically consolidated. They present several advantages, such as low construction and operating costs, and low sludge production, the anaerobic reactors are an attractive alternative to minimize problematic lack of basic sanitation in urban areas, and also of the rural areas. The anaerobic filters have been widely used in Brazil. It produces an effluent with low concentration of organic matter and solids suspended, besides conserving the nutrients, therefore, it is good for use in irrigation, but the practice must be associated with knowledge of the pathogens presence. The main objective of this study was to evaluate the efficiency of anaerobic filters in removal faecal coliforms and helminth eggs, and to verify if the effluent can be used for agricultural purposes, according to the World Organization of Health (WHO, 1989). The protocol used to enumerate helminths eggs was the modified Bailenger method, (Ayres and Mara, 1996) recommended by WHO for evaluation of raw effluent and treated effluent. The membrane filtration method was utilized to determine the concentrations of faecal coliforms. Three different systems of sewer treatment composed by anaerobic filters were analyzed. The results, in a general analysis, showed that all the researched systems reached a larger removal than 93% to helminth eggs, resulting in an effluent with smaller average than 1 egg/L. One of these systems, Sistema RN, reached a larger removal than 99%, confirming the good performance of the anaerobic filters in removal helminths eggs. Even with low concentrations of eggs in the influent, the filters were capable to remove this parameter efficiently. About faecal coliforms, it was observed for all the researched systems an effluent with 106 CFU/100mL. The high concentrations to faecal coliforms in the effluent just allow reuse for restricted irrigation, in agreement with the guidelines of WHO. Although the researched systems have not removed faecal coliforms efficiently, the results indicated a good efficiency of the anaerobic filters in removal helminth eggs