41 resultados para discrete wavelet transform
Resumo:
The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.
Resumo:
The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.
Resumo:
The automatic speech recognition by machine has been the target of researchers in the past five decades. In this period have been numerous advances, such as in the field of recognition of isolated words (commands), which has very high rates of recognition, currently. However, we are still far from developing a system that could have a performance similar to the human being (automatic continuous speech recognition). One of the great challenges of searches for continuous speech recognition is the large amount of pattern. The modern languages such as English, French, Spanish and Portuguese have approximately 500,000 words or patterns to be identified. The purpose of this study is to use smaller units than the word such as phonemes, syllables and difones units as the basis for the speech recognition, aiming to recognize any words without necessarily using them. The main goal is to reduce the restriction imposed by the excessive amount of patterns. In order to validate this proposal, the system was tested in the isolated word recognition in dependent-case. The phonemes characteristics of the Brazil s Portuguese language were used to developed the hierarchy decision system. These decisions are made through the use of neural networks SVM (Support Vector Machines). The main speech features used were obtained from the Wavelet Packet Transform. The descriptors MFCC (Mel-Frequency Cepstral Coefficient) are also used in this work. It was concluded that the method proposed in this work, showed good results in the steps of recognition of vowels, consonants (syllables) and words when compared with other existing methods in literature
Resumo:
In this work we presented an exhibition of the mathematical theory of orthogonal compact support wavelets in the context of multiresoluction analysis. These are particularly attractive wavelets because they lead to a stable and very efficient algorithm, that is Fast Transform Wavelet (FWT). One of our objectives is to develop efficient algorithms for calculating the coefficients wavelet (FWT) through the pyramid algorithm of Mallat and to discuss his connection with filters Banks. We also studied the concept of multiresoluction analysis, that is the context in that wavelets can be understood and built naturally, taking an important step in the change from the Mathematical universe (Continuous Domain) for the Universe of the representation (Discret Domain)
Resumo:
The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries
Resumo:
The human voice is an important communication tool and any disorder of the voice can have profound implications for social and professional life of an individual. Techniques of digital signal processing have been used by acoustic analysis of vocal disorders caused by pathologies in the larynx, due to its simplicity and noninvasive nature. This work deals with the acoustic analysis of voice signals affected by pathologies in the larynx, specifically, edema, and nodules on the vocal folds. The purpose of this work is to develop a classification system of voices to help pre-diagnosis of pathologies in the larynx, as well as monitoring pharmacological treatments and after surgery. Linear Prediction Coefficients (LPC), Mel Frequency cepstral coefficients (MFCC) and the coefficients obtained through the Wavelet Packet Transform (WPT) are applied to extract relevant characteristics of the voice signal. For the classification task is used the Support Vector Machine (SVM), which aims to build optimal hyperplanes that maximize the margin of separation between the classes involved. The hyperplane generated is determined by the support vectors, which are subsets of points in these classes. According to the database used in this work, the results showed a good performance, with a hit rate of 98.46% for classification of normal and pathological voices in general, and 98.75% in the classification of diseases together: edema and nodules
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
Embedded systems are widely spread nowadays. An example is the Digital Signal Processor (DSP), which is a high processing power device. This work s contribution consist of exposing DSP implementation of the system logic for detecting leaks in real time. Among the various methods of leak detection available today this work uses a technique based on the pipe pressure analysis and usesWavelet Transform and Neural Networks. In this context, the DSP, in addition to do the pressure signal digital processing, also communicates to a Global Positioning System (GPS), which helps in situating the leak, and to a SCADA, sharing information. To ensure robustness and reliability in communication between DSP and SCADA the Modbus protocol is used. As it is a real time application, special attention is given to the response time of each of the tasks performed by the DSP. Tests and leak simulations were performed using the structure of Laboratory of Evaluation of Measurement in Oil (LAMP), at Federal University of Rio Grande do Norte (UFRN)
Resumo:
Wavelet coding is an efficient technique to overcome the multipath fading effects, which are characterized by fluctuations in the intensity of the transmitted signals over wireless channels. Since the wavelet symbols are non-equiprobable, modulation schemes play a significant role in the overall performance of wavelet systems. Thus the development of an efficient design method is crucial to obtain modulation schemes suitable for wavelet systems, principally when these systems employ wavelet encoding matrixes of great dimensions. In this work, it is proposed a design methodology to obtain sub-optimum modulation schemes for wavelet systems over Rayleigh fading channels. In this context, novels signal constellations and quantization schemes are obtained via genetic algorithm and mathematical tools. Numerical results obtained from simulations show that the wavelet-coded systems derived here have very good performance characteristics over fading channels
Resumo:
Wavelet coding has emerged as an alternative coding technique to minimize the fading effects of wireless channels. This work evaluates the performance of wavelet coding, in terms of bit error probability, over time-varying, frequency-selective multipath Rayleigh fading channels. The adopted propagation model follows the COST207 norm, main international standards reference for GSM, UMTS, and EDGE applications. The results show the wavelet coding s efficiency against the inter symbolic interference which characterizes these communication scenarios. This robustness of the presented technique enables its usage in different environments, bringing it one step closer to be applied in practical wireless communication systems
Resumo:
Oil prospecting is one of most complex and important features of oil industry Direct prospecting methods like drilling well logs are very expensive, in consequence indirect methods are preferred. Among the indirect prospecting techniques the seismic imaging is a relevant method. Seismic method is based on artificial seismic waves that are generated, go through the geologic medium suffering diffraction and reflexion and return to the surface where they are recorded and analyzed to construct seismograms. However, the seismogram contains not only actual geologic information, but also noise, and one of the main components of the noise is the ground roll. Noise attenuation is essential for a good geologic interpretation of the seismogram. It is common to study seismograms by using time-frequency transformations that map the seismic signal into a frequency space where it is easier to remove or attenuate noise. After that, data is reconstructed in the original space in such a way that geologic structures are shown in more detail. In addition, the curvelet transform is a new and effective spectral transformation that have been used in the analysis of complex data. In this work, we employ the curvelet transform to represent geologic data using basis functions that are directional in space. This particular basis can represent more effectively two dimensional objects with contours and lines. The curvelet analysis maps real space into frequencies scales and angular sectors in such way that we can distinguish in detail the sub-spaces where is the noise and remove the coefficients corresponding to the undesired data. In this work we develop and apply the denoising analysis to remove the ground roll of seismograms. We apply this technique to a artificial seismogram and to a real one. In both cases we obtain a good noise attenuation