92 resultados para bomba a vácuo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Electrical Submersible Pump (ESP) has been one of the most appropriate solutions for lifting method in onshore and offshore applications. The typical features for this application are adverse temperature, viscosity fluids and gas environments. The difficulties in equipments maintenance and setup contributing to increasing costs of oil production in deep water, therefore, the optimization through automation can be a excellent approach for decrease costs and failures in subsurface equipment. This work describe a computer simulation related with the artificial lifting method ESP. This tool support the dynamic behavior of ESP approach, considering the source and electric energy transmission model for the motor, the electric motor model (including the thermal calculation), flow tubbing simulation, centrifugal pump behavior simulation with liquid nature effects and reservoir requirements. In addition, there are tri-dimensional animation for each ESP subsytem (transformer, motor, pump, seal, gas separator, command unit). This computer simulation propose a improvement for monitoring oil wells for maximization of well production. Currenty, the proprietaries simulators are based on specific equipments manufactures. Therefore, it is not possible simulation equipments of another manufactures. In the propose approach there are support for diverse kinds of manufactures equipments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of artificial lift of progressing cavity pump is very efficient in the production of oils with high viscosity and oils that carry a great amount of sand. This characteristic converted this lift method into the second most useful one in oil fields production. As it grows the number of its applications it also increases the necessity to dominate its work in a way to define it the best operational set point. To contribute to the knowledge of the operational method of artificial lift of progressing cavity pump, this work intends to develop a computational simulator for oil wells equipped with an artificial lift system. The computational simulator of the system will be able to represent its dynamic behavior when submitted to the various operational conditions. The system was divided into five subsystems: induction motor, multiphase flows into production tubing, rod string, progressing cavity pump and annular tubing-casing. The modeling and simulation of each subsystem permitted to evaluate the dynamic characteristics that defined the criteria connections. With the connections of the subsystems it was possible to obtain the dynamic characteristics of the most important arrays belonging to the system, such as: pressure discharge, pressure intake, pumping rate, rod string rotation and torque applied to polish string. The shown results added to a friendly graphical interface converted the PCP simulator in a great potential tool with a didactic characteristic in serving the technical capability for the system operators and also permitting the production engineering to achieve a more detail analysis of the dynamic operational oil wells equipped with the progressing cavity pump

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sanitation companies from Brazil has a great challenge for the XXI century: seek to mitigate the rate of physical waste (water, chemicals and electricity) and financial waste caused by inefficient operating systems drinking water supply, considering that currently we already face, in some cases, the scarcity of water resources. The supply systems are increasingly complex as they seek to minimize waste and at the same time better serve the growing number of users. However, this technological change is to reduce the complexity of the challenges posed by the need to include users with higher quality and efficiency in services. A major challenge for companies of water supplies is to provide a good quality service contemplating reducing expenditure on electricity. In this situation we developed a research by a method that seeks to control the pressure of the distribution systems that do not have the tank in your setup and the water comes out of the well directly to the distribution system. The method of pressure control (intelligent control) uses fuzzy logic to eliminate the waste of electricity and the leaks from the production of pumps that inject directly into the distribution system, which causes waste of energy when the consumption of households is reduced causing the saturation of the distribution system. This study was conducted at Green Club II condominium, located in the city of Parnamirim, state of Rio Grande do Norte, in order to study the pressure behavior of the output of the pump that injects water directly into the distribution system. The study was only possible because of the need we had to find a solution to some leaks in the existing distribution system and the extensions of the respective condominium residences, which sparked interest in developing a job in order to carry out the experiments contained in this research

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este projeto propõe desenvolver e implementar um controlador para o sistema de refrigeração da tocha indutiva a plasma térmico. Este processo é feito a partir da medição da temperatura através de um sensor do sistema de refrigeração. O sinal produzido será enviado para uma entrada analógica do microcontrolador da família PIC, que utilizando os conceitos de lógica fuzzy, controla a velocidade de um motor bomba. Este é responsável por diminuir ou aumentar o fluxo circulante de água que passa pela bobina, pelo corpo da tocha e pelo flange de fixação, deixando-os na temperatura desejada. A velocidade desta bomba será controlada por um inversor de frequência. O microcontrolador, também, acionará um ventilador caso exceda a temperatura de referência. A proposta inicial foi o desenvolvimento do controle da temperatura da bobina de uma tocha indutiva a plasma, mas com algumas adequações, foi possível também aplicar no corpo da tocha. Essa tocha será utilizada em uma planta de tratamento de resíduos industriais e efluentes petroquímicos. O controle proposto visa garantir as condições físicas necessárias para tocha de plasma, mantendo a temperatura da água em um determinado nível que permita o resfriamento sem comprometer, no entanto, o rendimento do sistema. No projeto será utilizada uma tocha de plasma com acoplamento indutivo (ICPT), por ter a vantagem de não possuir eletrodos metálicos internos sendo erodidos pelo jato de plasma, evitando uma possível contaminação, e também devido à possibilidade do reaproveitamento energético através da cogeração de energia. O desenvolvimento da tecnologia a plasma na indústria de tratamento de resíduos vem obtendo bons resultados. Aplicações com essa tecnologia têm se tornado cada vez mais importantes por reduzir, em muitos casos, a produção de resíduos e o consumo de energia em vários processos industriais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structures capable of absorbing large amounts of energy are of great interest, particularly for the automotive and aviation industries, to reduce tbe impact on passengers in the case of a collision. The energy absorption properties of composite materials structures can be tailored, thus making these structures an appealing option a substitute of more traditional structures in applications where energy absorption is crucial. ln this research, the influence of some parameters, which affect the energy absorption capacity of composite material tubes, was investigated. The tubes were fabricated by hand lay-up, using orthophthalic polyester resin and a plain weave E-glass fabric Test specimens were prepared and tested under compression load. The ínfluence of the following parameters on the specific energy absorption capacity of the tubes was studied: fiber configuration (0/90º or ± 45°), tube cross-section (circular or square), and processing conditions (with or without vacuum). The results indicated that circular cross-section tubes with fibers oriented at 0/90º presented the highest level of specific energy absorbed. Further, specimens from tubes fabricated under vacuum displayed higher energy absorption capacity, when compared with specimens from tubes fabricated without vacuum. Thus, it can be concluded that the fabrication process with vacuum produce composite structures with better energy absorption capacity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal/ceramic interfaces using zirconia have dominated the industrial applications in the last decade, due to the high mechanical strength and fracture toughness of zirconia, especially at temperatures below 300 ºC. Also noteworthy is the good ionic conductivity in high temperatures of this component. In this work joining between ZrO2 Y-TZP and ZrO2 Mg-PSZ with austenitic stainless steel was studied. These joints were brazed at high-vacuum after mechanical metallization with Ti using filler alloys composed by Ag-Cu and Ag-Cu-Ni. The influence of the metallization, and the affinity between the different groups (ceramic / filler alloys) was evaluated, in order to achieve strong metal/ceramic joints. Evaluation of joints and interfaces, also the characterization of base materials was implemented using various techniques, such as: x-ray diffraction, leak test, three-point flexural test and scanning electron microscopy with chemical analysis. The microstructural analysis revealed physical and chemical bonds in the metal/ceramic interfaces, providing superior leak proof joints and stress cracking, in order to a good joint in all brazed samples. Precipitation zones and reaction layers with eutetic characteristics were observed between the steel and the filler metal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of reflective surfaces functioning as thermal insulator has grown significantly over the years. Reflective thermal insulator are materials that have several characteristics such as low emissivity, low absorptivity and high reflectivity in the infrared spectrum. The use of these materials has grown a lot lately, since it contains several important radioactive properties that minimize the heat loss of thermal systems and cooling systems that are used to block the heat on the roof of buildings. A system made of three surfaces of 316 stainless steel mirror was built to analyze the influence of reflective surfaces as a way to reduce the heat loss and thereby conserve the energy of a thermal system. The system was analyzed both with and without the presence of vacuum, and then compared with a system that contained glass wool between the stainless steel mirror walls, since this isolator is considered resistive and also broadly used around the world in thermal systems. The reflectivity and emissivity of the surfaces used were also measured in this experiment. A type K thermocouple was fixed on the wall of the system to obtain the temperature of the stainless steel mirror surfaces and to analyze the thermal behavior of each configuration used. The results showed an efficiency of 13% when the reflective surfaces were used to minimize the heat loss of the thermal system. However, the system with vacuum had the best outcome, a 60% efficiency. Both of these were compared to the system made of glass wool as a thermal insulator

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The progressing cavity pumping (PCP) is one of the most applied oil lift methods nowadays in oil extraction due to its ability to pump heavy and high gas fraction flows. The computational modeling of PCPs appears as a tool to help experiments with the pump and therefore, obtain precisely the pump operational variables, contributing to pump s project and field operation otimization in the respectively situation. A computational model for multiphase flow inside a metallic stator PCP which consider the relative motion between rotor and stator was developed in the present work. In such model, the gas-liquid bubbly flow pattern was considered, which is a very common situation in practice. The Eulerian-Eulerian approach, considering the homogeneous and inhomogeneous models, was employed and gas was treated taking into account an ideal gas state. The effects of the different gas volume fractions in pump volumetric eficiency, pressure distribution, power, slippage flow rate and volumetric flow rate were analyzed. The results shown that the developed model is capable of reproducing pump dynamic behaviour under the multiphase flow conditions early performed in experimental works