33 resultados para Wistar audiogenic rats
Resumo:
Diversion colitis is a chronic inflammatory process affecting the dysfunctional colon, after a colostomy. It is postulated that nutritional deficiency of the colonic epithelium by the absence of short-chain fatty acids (SCFA) is one of the factors responsible for the appearance of DC and that their employment could reverse the morphological changes of the mucosa. The treatment of choice for fecal diversion colitis (DC) is the reconstruction of the intestinal tract, although they suggested therapeutic options using enemas. This study evaluates the effect of SCFA in atrophy and inflammation in excluded colonic segments before and after the installation DC. Forty Wistar rats were divided into four groups (n = 10 for each group), submitted colostomy with distal colon exclusion. Two control groups (A1 and B1) received rectally administered physiological saline, whereas two experimental groups (A2 and B2) received rectally administered short-chain fatty-acids. The A groups were prophylactically treated (5th to 40th days postoperatively), whereas the B groups were therapeutically treated (after postoperative day 40), for 07 days. Histological sections stained with HE were used for histological analysis of the thickness of the colonic mucosa excluded (t- Student p ≤0.05). Inflammatory reaction of the lamina propria and mucosa were measured with scores previously established (Mann Whitney p ≤ 0.05). There was a significant thickness recovery of the colonic mucosa in group B2 animals (p = 0.0001), which also exhibited a significant reduction in the number of eosinophilic polymorphonuclear cells in the lamina propria (p = 0.0126) and in the intestinal lumen (p = 0.0256). Group A2 did not prevent the mucosal atrophy and significant increases in the numbers of lymphocytes (p=0.0006) and 50 eosinophilic polymorphonuclear cells in the lamina propria of the mucosa (p = 0.0022). Therapeutic use of short-chain fatty-acids significantly reduced eosinophilic polymorphonuclear cell numbers in the intestinal wall and in the colonic lumen; it also reversed the atrophy of the colonic mucosa. Prophylactic use did not impede the development of mucosal atrophy
Resumo:
Radiobiocomplexes are used in nuclear medicine to obtain images and to treat diseases. Blood constituents have been used as radiobiocomplexes. Natural or synthetic products can influence on the labeling of blood constituents with technetium-99m (99mTc), the morphology of red blood cells and on the stannous chloride (SnCl2) action on plasmid DNA. Sambucus australis and Sambucus nigra are used in popular culture for treating diseases. The aim of this work was to evaluate the effects of the extracts of Sambucus australis and Sambucus nigra on the labeling of blood constituents with 99mTc, on morphology of red blood cells of Wistar rats, on the topology of plasmids DNA and the action against the SnCl2 effects on the DNA of plasmids pBSK. On the labeling of blood constituents with 99mTc it was verified that both extracts were capable to decrease significantly the radioactivity in the cellular compartment and in the insoluble fraction of plasma. Sambucus australis also decreased the labeling of insoluble fraction of blood cells with 99mTc. Both extracts did not alter the morphology of red blood cells. Moreover, it was verified that Sambucus nigra did not alter the electrophoretic profile of plasmid DNA, but decreased the effect of SnCl2 on plasmid DNA. These last results sugest a genotoxic effect and a protective action of Sambucus nigra extract against the SnCl2 action on plasmid DNA. This work was developed with the contribution of several Departments of biomedical area of the Hospital Universitário Pedro Ernesto, of the UERJ, characterizing a multidisciplinary experimental research
Resumo:
Post-menopause is a period of women s life cycle that is characterized by estrogen depletion and therefore increasing cardiovascular diseases, neurodegenerative disorders, urogenital atrophy, osteoporosis, hot flushes and sexual discomfort incidences. Estrogen is a hormone with comfirmed antioxidant action and its depletion is related to oxidative stress instalation and damaging various important biomolecules. Regular physical activity has been identified as a factor involved in reducing women s post-menopausal complications in addition to improving antioxidant defense by reducing the oxidative damage and consequently improving life s quality in this part of the population. This study aims to evaluate the influence of hypoestrogenism in antioxidant adaptation due to regular exercise, by determining reduced glutathione (GSH) and Thiobarbituric Acid Reactive Substances (SRAT) concentrations and antioxidant enzymes glutathione peroxidase (GPx), Superoxide Dismutase (SOD) and Catalase (CAT) activities in blood, brain and liver of rats. To achieve this goal we used 50 Wistar rats, weighing 180-250g which were divided into two groups, control - GC (25) and ooforectomized - GO (25). Each group was subdivided into five subgroups: Not-trained - S (5), Not-trained Acute Exercise - SEA (5), regular exercise 30 days - E30 (5), regular exercise 60 days - E60 (5) and regular exercise 90 days - E90 (5). Each of the three subgroups exercised regularly was subjected to acute exercise on the eve and the day of sacrifice to collect biological samples of blood, liver and brain and subsequent determination of SRAT concentration, GSH content and antioxidant enzymes GPx, SOD and CAT activities. The results indicated that the sedentary animals acutely exercised presented oxidative stress and regular physical activity led to antioxidant adaptation. In ooforectomized group the antioxidant adaptation seen in control animals showed to be impaired. Unlike the results from blood and liver, in brain there was a shield against oxidative damage originated by the exercise and that hypoestrogenism led to a loss of this natural antioxidant potential. Therefore, hypoestrogenism interferes negatively in antioxidant adaptation due to regular exercise