37 resultados para THERMAL COMFORT
Resumo:
This research covers the topic of social housing and its relation to thermal comfort, so applied to an architectural and urban intervention in land situated in central urban area of Macaíba/RN, Brazil. Reflecting on the role of design and use of alternative building materials in the search for better performance is one of its main goals. The hypothesis is that by changing design parameters and choice of materials, it is possible to achieve better thermal performance results. Thus, we performed computer simulations of thermal performance and natural ventilation using computational fluid dynamics or CFD (Computational Fluid Dynamics). The presentation of the thermal simulation followed the methodology proposed in the dissertation Negreiros (2010), which aims to find the percentage of the amount of hours of comfort obtained throughout the year, while data analysis was made of natural ventilation from images generated by the images extracted from the CFD. From model building designed, was fitted an analytical framework that results in a comparison between three different proposals for dwellings housing model, which is evaluated the question of the thermal performance of buildings, and also deals with the spatial variables design, construction materials and costs. It is concluded that the final report confirmed the general hypotheses set at the start of the study, it was possible to quantify the results and identify the importance of design and construction materials are equivalent, and that, if combined, lead to gains in thermal performance potential.
Resumo:
The employment of flexibility in the design of façades makes them adaptable to adverse weather conditions, resulting in both minimization of environmental discomfort and improvement of energy efficiency. The present study highlights the potential of flexible façades as a resource to reduce rigidity and form repetition, which are usually employed in condominiums of standardized houses; as such, the work presented herein contributes to field of study of architectural projects strategies for adapting and integrating buildings within the local climate context. Two façade options were designed using as reference the bionics and the kinetics, as well as their applications to architectural constructions. This resulted in two lightweight and dynamic structures, which cater to constraints of comfort through combinations of movements, which control the impact of solar radiation and of cooling in the environment. The efficacy and technical functionality of the façades were tested with comfort analysis and graphic computation software, as well as with physical models. Thus, the current research contributes to the improvement of architectural solutions aimed at using passive energy strategies in order to offer both better quality for the users and for the sustainability of the planet
Resumo:
The recent tendency to utilize parking lots for other purposes has demonstrated that more time has been spent by visitors, mainly in great cities. Therefore, this paper investigates the thermal comfort and the air quality indoors in areas specifically used as parking lots by analyzing the direct relation between such environments and vehicular pollution. The thermal comfort and the quality of air indoors in parking lots with different architectonic typology (ground-floor and underground) are also studied, aiming to contribute to the proposition of suitable new areas designated to human usage. Field research was done, in two distinct periods within different weather conditions (January and July) in, two naturally cooled, parking lots located in Natal - RN. The internal environment agents were measured by using tools for air temperature, humidity, speed and direction; interviews with employees and visitors and chemical analysis through appropriate tools to analyze specific material, carbon monoxide and ozone. The results showed that chemical agents densely concentrate mostly in the closed parking space, aggravated by weather conditions, which dissatisfied the visitors. Still, it was shown that architectonic typology, alongside topographical aspects compromise internal environmental conditions, which increases the retention of pollution, leading to dissatisfactory thermal comfort levels and becoming less suitable for usage by visitors considering air and thermal comfort aspects. Consequently, they are not suitable for human stay due to the poor quality of the indoor air
Resumo:
This study was intended to investigate how the urban form has been influencing the changes in the climate of the city and make a correlation between the climate and the thermal sensation of the users of open spaces. The research was developed in the district of Petrópolis in Natal/ RN whose occupation has been almost consolidated. Among other reasons, this district was selected because it was planned considering the environmental aspects of comfort. The methodologies used are based on KATZSCHNER (1997) and OLIVEIRA (1988) studies, which suggest the drawing and analysis of maps of the area under study, including topography, height of the buildings, land use, green areas, and types of soil pavement, as well as measurement of the environmental variables: air temperature, relative humidity, direction and wind speed for a comparative study. As part of this, study local users of the district were interviewed about their thermal sensations in open spaces. For the statistical analysis, data was collected at 10 distinct points characterized by BUSTOS ROMERO (2002), being 8 within the district and 2 at different places (outside the district), at climatologic stations, in 3 periods (August/2000, January/2002 and June/2002), for 4 consecutive days for each measurement (from Sunday to Wednesday) at the time of lower and higher temperatures in the city, 6:00 am and 1:00 pm, respectively. At the same time interviews were carried out with users of the open spaces in the area, totaling 171 valid formularies. The urban form showed a rather leveled topography, great diversity of land use and height of the buildings, with the existence of an area mostly occupied with high buildings, very little green area and soil practically impermeable. The statistical analysis showed high temperature and humidity levels. The wind direction is predominantly Southeast with extremely variable speeds. When the data from this district is compared with the data from other areas in the city and its outskirt, it was observed that this district is hotter and less ventilated than the others; besides, most users said that they felt uncomfortable in the local environmental conditions. The results of the analysis generated a zoning for the district with recommendations for soil occupation. The profile of the user was defined regarding the thermal comfort, as well as some discussion about the comfort parameters, including the proposal of limiting areas of temperature and humidity for the thermal comfort in the open spaces
Resumo:
Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study
Resumo:
This dissertation of master degree was presented to Post-Graduation Program in Architecture and Planning at UFRN, Brazil. It evaluates 45 one-family housings in the Metropolitan Area of Recife, whose architects consider them to be in conformity with the recommendations contained in Armando de Holanda's book: A Guide to build in the Brazilian Northeast: Architecture as a pleasant place in the sunny tropics , published in 1976 by UFPE. For a long time, it used to be reference in many Architecture and Planning Schools of the Northern Region of Brazil. The research s methodological procedures are based on the Post- Occupancy Evaluation (P.O.E.) with emphasis on the users' thermal comfort of the houses that make part of the sample. Therefore, it has been done technical analyses of the projects, when possible; interviews with the architects; building s inspections; and form applications to the users. The collected data analysis was based on the project recommendations of Holanda s book, they can be synthesized in the principle of Building Leafy". It can not be affirmed that all the houses present the recommendations contained in the guide, but, in many different ways, they exist, sometimes more intensely and sometimes more shyly. However, it can be noticed that in the 45 projects, that the architects perceived the importance of "Building Leafy" on the climatic reality of the Metropolitan Region of Recife
Resumo:
The present work concerns the use of shade elements as architectural elements to block sunlight in public buildings. In a city like Natal, (5o South) the incidence of sunrays in any type of design should be a constant concern for all the architects. Besides, this habit of avoiding insolation in the environment is not a common practice. Within this context, the present work has the objective to dig deep into the knowledge of solar control, studying some cases and verifying its function according to the orientation and the original design of the building, having in mind if the shade elements usually used in the region have achieved their purpose of providing protection against the incidence of direct sun rays. This study considers the position of the shade element (horizontal and vertical), the angle formed between them and the respective facades, and the local of the buildings in relation to their orientation during the summer, winter and equinox solstice. As supporting instruments the solar map of the city and the protractor, for measuring shade angles, were used. It was concluded that in all the cases studied, it was not possible to obtain the maximum use of the elements. It was verified that the best type of shade element (more efficient) for the city of Natal is the mixed type (horizontal and vertical) and that the vertical shade elements are more efficient in the early mornings and late afternoon. The horizontal shade elements are used more effective at midday. We intend to present the results of this study to the architects in the region in order to show them the correct ways of using the shade elements according to the possible orientation on the facade, as a supporting tool at the time of designing a project as well as a subsidy for further discussions on the elaboration of the new urban standards for the city of Natal/RN