32 resultados para Solar energy.
Resumo:
Composite materials can be defined as materials formed from two or more constituents with different compositions, structures and properties, which are separated by an interface. The main objective in producing composites is to combine different materials to produce a single device with superior properties to the component unit. The present study used a composite consisting of plaster, cement, EPS, tire, PET and water to build prototype solar attempt to reduce the manufacturing cost of such equipment. It was built two box type solar cookers, a cooler to be cooled by solar energy, a solar dryer and a solar cooker concentration. For these prototypes were discussed the processes of construction and assembly, determination of thermal and mechanical properties, and raising the performance of such solar systems. Were also determined the proportions of the constituents of the composite materials according to specific performance of each prototype designed. This compound proved to be feasible for the manufacture of such equipment, low cost and easy manufacturing and assembly processes
Resumo:
Microalgae are microscopic photosynthetic organisms that grow rapidly and in different environmental conditions due to their simple cellular structure. The cultivation of microalgae is a biological system capable of storing solar energy through the production of organic compounds via photosynthesis, and these species presents growth faster than land plants, enabling higher biomass yield. Thus, it is understood that the cultivation of these photosynthetic mechanisms is part of a relevant proposal, since, when compared to other oil producing raw materials, they have a significantly higher productivity, thus being a raw material able to complete the current demand by biodiesel . The overall aim of the thesis was to obtain biofuel via transesterification process of bio oil from the microalgae Isochrysis galbana. The specific objective was to estimate the use of a photobioreactor at the laboratory level, for the experiments of microalgae growth; evaluating the characteristics of biodiesel from microalgae produced by in situ transesterification process; studying a new route for disinfection of microalgae cultivation, through the use of the chemical agent sodium hypochlorite. The introduction of this new method allowed obtaining the kinetics of the photobioreactor for cultivation, besides getting the biomass needed for processing and analysis of experiments in obtaining biodiesel. The research showed acceptable results for the characteristics observed in the bio oil obtained, which fell within the standards of ANP Resolution No. 14, dated 11.5.2012 - 18.5.2012. Furthermore, it was demonstrated that the photobioreactor designed meet expectations about study culture growth and has contributed largely to the development of the chosen species of microalgae. Thus, it can be seen that the microalgae Isochrysis galbana showed a species with potential for biodiesel production