78 resultados para Simulador orçamentário
Resumo:
In order to guarantee database consistency, a database system should synchronize operations of concurrent transactions. The database component responsible for such synchronization is the scheduler. A scheduler synchronizes operations belonging to different transactions by means of concurrency control protocols. Concurrency control protocols may present different behaviors: in general, a scheduler behavior can be classified as aggressive or conservative. This paper presents the Intelligent Transaction Scheduler (ITS), which has the ability to synchronize the execution of concurrent transactions in an adaptive manner. This scheduler adapts its behavior (aggressive or conservative), according to the characteristics of the computing environment in which it is inserted, using an expert system based on fuzzy logic. The ITS can implement different correctness criteria, such as conventional (syntactic) serializability and semantic serializability. In order to evaluate the performance of the ITS in relation to others schedulers with exclusively aggressive or conservative behavior, it was applied in a dynamic environment, such as a Mobile Database Community (MDBC). An MDBC simulator was developed and many sets of tests were run. The experimentation results, presented herein, prove the efficiency of the ITS in synchronizing transactions in a dynamic environment
Resumo:
The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system
Resumo:
Internet applications such as media streaming, collaborative computing and massive multiplayer are on the rise,. This leads to the need for multicast communication, but unfortunately group communications support based on IP multicast has not been widely adopted due to a combination of technical and non-technical problems. Therefore, a number of different application-layer multicast schemes have been proposed in recent literature to overcome the drawbacks. In addition, these applications often behave as both providers and clients of services, being called peer-topeer applications, and where participants come and go very dynamically. Thus, servercentric architectures for membership management have well-known problems related to scalability and fault-tolerance, and even peer-to-peer traditional solutions need to have some mechanism that takes into account member's volatility. The idea of location awareness distributes the participants in the overlay network according to their proximity in the underlying network allowing a better performance. Given this context, this thesis proposes an application layer multicast protocol, called LAALM, which takes into account the actual network topology in the assembly process of the overlay network. The membership algorithm uses a new metric, IPXY, to provide location awareness through the processing of local information, and it was implemented using a distributed shared and bi-directional tree. The algorithm also has a sub-optimal heuristic to minimize the cost of membership process. The protocol has been evaluated in two ways. First, through an own simulator developed in this work, where we evaluated the quality of distribution tree by metrics such as outdegree and path length. Second, reallife scenarios were built in the ns-3 network simulator where we evaluated the network protocol performance by metrics such as stress, stretch, time to first packet and reconfiguration group time
Resumo:
This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text
Resumo:
This work intends to analyze the behavior of the gas flow of plunger lift wells producing to well testing separators in offshore production platforms to aim a technical procedure to estimate the gas flow during the slug production period. The motivation for this work appeared from the expectation of some wells equipped with plunger lift method by PETROBRAS in Ubarana sea field located at Rio Grande do Norte State coast where the produced fluids measurement is made in well testing separators at the platform. The oil artificial lift method called plunger lift is used when the available energy of the reservoir is not high enough to overcome all the necessary load losses to lift the oil from the bottom of the well to the surface continuously. This method consists, basically, in one free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well s lifting efficiency. A pneumatic control valve is mounted at the flow line to control the cycles. When this valve opens, the plunger starts to move from the bottom to the surface of the well lifting all the oil and gas that are above it until to reach the well test separator where the fluids are measured. The well test separator is used to measure all the volumes produced by the well during a certain period of time called production test. In most cases, the separators are designed to measure stabilized flow, in other words, reasonably constant flow by the use of level and pressure electronic controllers (PLC) and by assumption of a steady pressure inside the separator. With plunger lift wells the liquid and gas flow at the surface are cyclical and unstable what causes the appearance of slugs inside the separator, mainly in the gas phase, because introduce significant errors in the measurement system (e.g.: overrange error). The flow gas analysis proposed in this work is based on two mathematical models used together: i) a plunger lift well model proposed by Baruzzi [1] with later modifications made by Bolonhini [2] to built a plunger lift simulator; ii) a two-phase separator model (gas + liquid) based from a three-phase separator model (gas + oil + water) proposed by Nunes [3]. Based on the models above and with field data collected from the well test separator of PUB-02 platform (Ubarana sea field) it was possible to demonstrate that the output gas flow of the separator can be estimate, with a reasonable precision, from the control signal of the Pressure Control Valve (PCV). Several models of the System Identification Toolbox from MATLAB® were analyzed to evaluate which one better fit to the data collected from the field. For validation of the models, it was used the AIC criterion, as well as a variant of the cross validation criterion. The ARX model performance was the best one to fit to the data and, this way, we decided to evaluate a recursive algorithm (RARX) also with real time data. The results were quite promising that indicating the viability to estimate the output gas flow rate from a plunger lift well producing to a well test separator, with the built-in information of the control signal to the PCV
Resumo:
There are some approaches that take advantage of unused computational resources in the Internet nodes - users´ machines. In the last years , the peer-to-peer networks (P2P) have gaining a momentum mainly due to its support for scalability and fault tolerance. However, current P2P architectures present some problems such as nodes overhead due to messages routing, a great amount of nodes reconfigurations when the network topology changes, routing traffic inside a specific network even when the traffic is not directed to a machine of this network, and the lack of a proximity relationship among the P2P nodes and the proximity of these nodes in the IP network. Although some architectures use the information about the nodes distance in the IP network, they use methods that require dynamic information. In this work we propose a P2P architecture to fix the problems afore mentioned. It is composed of three parts. The first part consists of a basic P2P architecture, called SGrid, which maintains a relationship of nodes in the P2P network with their position in the IP network. Its assigns adjacent key regions to nodes of a same organization. The second part is a protocol called NATal (Routing and NAT application layer) that extends the basic architecture in order to remove from the nodes the responsibility of routing messages. The third part consists of a special kind of node, called LSP (Lightware Super-Peer), which is responsible for maintaining the P2P routing table. In addition, this work also presents a simulator that validates the architecture and a module of the Natal protocol to be used in Linux routers
Resumo:
This paper presents the performanee analysis of traffie retransmission algorithms pro¬posed to the HCCA medium aeeess meehanism of IEEE 802.11 e standard applied to industrial environmen1. Due to the nature of this kind of environment, whieh has eleetro¬magnetic interferenee, and the wireless medium of IEEE 802.11 standard, suseeptible to such interferenee, plus the lack of retransmission meehanisms, refers to an impraetieable situation to ensure quality of service for real-time traffic, to whieh the IEEE 802.11 e stan¬dard is proposed and this environment requires. Thus, to solve this problem, this paper proposes a new approach that involves the ereation and evaluation of retransmission al-gorithms in order to ensure a levei of robustness, reliability and quality of serviee to the wireless communication in such environments. Thus, according to this approaeh, if there is a transmission error, the traffie scheduler is able to manage retransmissions to reeo¬ver data 10s1. The evaluation of the proposed approaeh is performed through simulations, where the retransmission algorithms are applied to different seenarios, whieh are abstrae¬tions of an industrial environment, and the results are obtained by using an own-developed network simulator and compared with eaeh other to assess whieh of the algorithms has better performanee in a pre-defined applieation
Resumo:
The Electrical Submersible Pump (ESP) has been one of the most appropriate solutions for lifting method in onshore and offshore applications. The typical features for this application are adverse temperature, viscosity fluids and gas environments. The difficulties in equipments maintenance and setup contributing to increasing costs of oil production in deep water, therefore, the optimization through automation can be a excellent approach for decrease costs and failures in subsurface equipment. This work describe a computer simulation related with the artificial lifting method ESP. This tool support the dynamic behavior of ESP approach, considering the source and electric energy transmission model for the motor, the electric motor model (including the thermal calculation), flow tubbing simulation, centrifugal pump behavior simulation with liquid nature effects and reservoir requirements. In addition, there are tri-dimensional animation for each ESP subsytem (transformer, motor, pump, seal, gas separator, command unit). This computer simulation propose a improvement for monitoring oil wells for maximization of well production. Currenty, the proprietaries simulators are based on specific equipments manufactures. Therefore, it is not possible simulation equipments of another manufactures. In the propose approach there are support for diverse kinds of manufactures equipments
Resumo:
The main purpose of this work is to develop an environment that allows HYSYS R chemical process simulator communication with sensors and actuators from a Foundation Fieldbus industrial network. The environment is considered a hybrid resource since it has a real portion (industrial network) and a simulated one (process) with all measurement and control signals also real. It is possible to reproduce different industrial process dynamics without being required any physical network modification, enabling simulation of some situations that exist in a real industrial environment. This feature testifies the environment flexibility. In this work, a distillation column is simulated through HYSYS R with all its variables measured and controlled by Foundation Fieldbus devices
Resumo:
This dissertation describes the implementation of a WirelessHART networks simulation module for the Network Simulator 3, aiming for the acceptance of both on the present context of networks research and industry. For validating the module were imeplemented tests for attenuation, packet error rate, information transfer success rate and battery duration per station
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature
Resumo:
Este trabalho apresenta o desenvolvimento de um método de coordenação e cooperação para uma frota de mini-robôs móveis. O escopo do desenvolvimento é o futebol de robôs. Trata-se de uma plataforma bem estruturada, dinâmica e desenvolvida no mundo inteiro. O futebol de robôs envolve diversos campos do conhecimento incluindo: visão computacional, teoria de controle, desenvolvimento de circuitos microcontrolados, planejamento cooperativo, entre outros. A título de organização os sistema foi dividido em cinco módulos: robô, visão, localização, planejamento e controle. O foco do trabalho se limita ao módulo de planejamento. Para auxiliar seu desenvolvimento um simulador do sistema foi implementado. O simulador funciona em tempo real e substitui os robôs reais. Dessa forma os outros módulos permanecem praticamente inalterados durante uma simulação ou execução com robôs reais. Para organizar o comportamento dos robôs e produzir a cooperação entre eles foi adotada uma arquitetura hierarquizada: no mais alto nível está a escolha do estilo de jogo do time; logo abaixo decide-se o papel que cada jogador deve assumir; associado ao papel temos uma ação específica e finalmente calcula-se a referência de movimento do robô. O papel de um robô dita o comportamento do robô na dada ocasião. Os papéis são alocados dinamicamente durante o jogo de forma que um mesmo robô pode assumir diferentes papéis no decorrer da partida
Resumo:
This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables
Resumo:
The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant