118 resultados para Setor da construção civil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies concerning the landscape have investigated the most important activities that contribute for its modification and have tried to better understand the society through the marks left by its quotidian. It is understood that singular landscapes constitute the cultural patrimonies of the cities, once they are part of the daily life of the citizens and are present in their social representations. Some contemporary authors defend the preservation of the natural and urban landscape trying, specially, to keep its importance for the local population. Natal is a city where the ambient qualities are well defined and known by the beauty of the area where it is located. Situated just between a river and the sea, the city grew following its geographic characteristics. The Potengi River, the Atlantic Ocean and the vast dunes ecosystem represented natural limits to the urban expansion; at the same time they have favored the development of a landscape pattern marked by the dialectic between the natural elements and the human interventions. However, this relationship changed after the intensification of the high rising development process that took place since the 1960s. The urban legislation tried to preserve the features of the local landscape delimiting Areas for Controlling Building High , destined to protect the scenic value of some parts of the city. On the other hand, the civil construction sector has made constant pressure in sense to abolish or to modify this legal instrument, aiming profits that have increased, in the 1990s, because of the consumption and the qualification of the urban space for tourist activities. It is necessary the raising of new elements to stimulate the quarrel about the landscape preservation, the process of the urban space production and the best way for the legislation implementation. This work tries to raise elements about the subject at local level, in sense to use Natal City experience to contribute for the formulation of indicators to raise the question about the lack of measure for subjective values, for example the cultural and affective value of the landscape. The natural elements inserted in the urban profile, represent strong visual references and supply identity to the town; they are part of the collective imaginary and are detached in the social context of the city. Then, why the preservation of the landscape, that estimates the improvement in the quality of life, is not enough to justify the controlling building high already previewed as part of Natal City Legislation? These questions send us to the approach of the landscape, as a community patrimony, alerting that some of its significant esthetics attributes must be preserved as a legacy for the future generations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the Brazilian construction industry has gone by changes like currency stability, increasing competition, shortage of skilled labor and increasing quality importance required by the customer, who made the sector companies seek solutions through new management practices in order to become more efficient. A alternative to these management practices is known as Lean Construction which is derived from the Toyota System Production. Lean Construction main goals are to reduce parts of activities that do not add value, increase product value by considering customer needs, reduce variability and production cycle time, simplify process by reducing the number of parts or steps, increase the flexibility in the product execution and transparency process, focus the control on overall process, introduce continuous improvement process, maintain a balance between improvements in flows and conversions and seek to learn from practices adopted by competitors. However, the construction industry is characterized by having nomadic activity, which undertakes an unique product with high cost of production and big inertia for behavioral change, making it difficult to implement the philosophy of lean construction in companies. In this sense, the main objective of this study is to develop a methodology for implementation of the principles of Lean Construction. The method of implementing the proposed management system was designed with the aid of 5W2H tool, and the implementation process is divided into three phases. The first one aims to know in a macro way the current operation of construction, identify who is its target audience and what are the products and services offered to the Market. The second phase aims to describe what actions should be taken and which documents are needed to be created or modified; finally, the third step goal consists in how to control and monitor established processes, where through Strategic Planning the company goals would be set along with their respective targets and indicators in order to keep the system working, aiming for continuous improvement with focus on the customer. This methodology was conceived as a case study analyzing a medium size construction with more than 18 years of activity and certified for almost 10 years with ISO9001 and level A in PBQP-H. We also conclude that this implementation process can be used in any developer and / or builder

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays lives up in an era of tight credit caused by the global financial crisis, as occurred in the past, it is the responsibility of various sectors and segments of society find ways to reinvent itself. In this context, Lean Construction presents itself as a strong alternative production management for companies in the construction segment. Arising out of lean thinking that originated in Japan in the postwar period and has spread around the world in times of extreme scarcity with the oil crisis. In practice the Lean Construction is a philosophy that seeks to improve the process of production management, maximizing the value of the flow from the customer's perspective through the elimination of losses. And thrives in environments and cultures that consider the scarcity of resources like something natural, applying both the macroeconomic crisis as in times of prosperity. The Planning and Production Control - PCP presents itself as a fundamental building block for companies to protect themselves in the face of economic fluctuations, seeking for their survival and success in the competitive market. Motivated by the lack of discussion of the topic in the local academy, and for the identification of 93.33% of construction companies that do not make use of methodological tools for PCP in the state, this dissertation aims to study and propose the implementation of lean construction in methodology of planning projects implemented on construction sites. This characterized the management system, of the production of a construction company, pointing out the main causes of ineffectiveness related to consequent low performance of one of his ventures. In sequence, the PCP was implemented with the use of tools to serve the principles of lean construction. This being monitored through indicators that provided managers managerial view of process of actions control and production of protective mechanisms. All implementation guidelines and application of this management model, were exposed in a simplified way, practical and efficient, in order to break the resistance of new practices and old paradigms in the industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

FORMIGA, Felipe Lira et al. Avaliação da Potencialidade de Uso do Resíduo Proveniente da Indústria de Beneficiamento do Caulim na Produção de Piso Cerâmico. Cerâmica Industrial, v. 14, p. 41-45, 2009.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays the acquisition of sustainable elements and concepts in construction has been increasingly discussed, improved and incorporated to buildings, since the sector directly interferes in the urban space and environment, representing environmental impact. In order to make a sustainable building (Green Building) it is vital to incorporate less damaging constructive practice, starting from the project until the operation of the enterprise, that means to consider an integrated process of conception, implementation, construction and operation. The more effective sustainable principles participation in architecture happens at the projecting step through minimal environment impact solutions. Among the issues varieties that goes with sustainability proposal of the buildings project, there were added to this work the elements that are directly attached to bioclimatic architecture, more specifically the climate variation, ventilation, lighting and sunlight, that directly affect the project conception. It is important to put in evidence that architecture role goes far beyond the simple activity of building spaces; it is the sequence of political, economic, social and cultural elements, having the users as the main apparatus to its materialization. Thereby this professional dissertation consists of an architecture draft for a professional and technological school in the Rio Grande do Norte State, this dissertation is based on the analysis of previous experience and the bioclimatic principles that implicate in building on hot and dry, hot and humid climates, and the use of strategic solutions that aim the optimization of natural light and ventilation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this present research is to investigate about aplication of the supply chain management in Civil Construction, through perception of brasilian building companies directors. Research purpose includes potential benefits and main dificults analysis in supply chain management, beyond to identify decision criterions for suppliers and sales chain (commission agent and real state agency) choice and reduction, to facilility management in companies. The methodology used in this work considers the application of a questionnaire with scales of the type Likert being constituted of variables that compose the aspects of evaluation and of behaviors, beyond questions to identify the market profile of the respondents. For analysis statistics is used the descriptive, clusters and variance, ANOVA, analysis last two to verify the connections between variables. The results show more perception as for long terms contracts with suppliers for purchase of materials and services being decisive for companies nowadays (40%) than as for exclusive contracts with commission agents (30%). There is a positive appraisal about viability of hipotetic situations showed, but more caution as for disposition to apply them too. Another results aim for biggers dificults in management of chain links formed by commission agents and real state agencies, than chain links formed by anothers suppliers of materials and services. The companies for study were chosen among to those with ISO 9000 certificate until november 2001, considering that these companies have the best management systems, probably

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present two models of blocks made of composite material obtained from the use of cement, plaster, EPS crushed, shredded tire, mud, sand and water, for the construction of popular housing. Were made metal molds for the manufacture of blocks to be used in the construction of a residence for low-income families. Performed tests of compressive strength of the composite for various formulations that met the specific standard for blocks used in construction. To study the thermal conductivity of the composite for further study of thermal comfort generated in a residence built with the proposed composite. We also determined the mass-specific and water absorption for each formulation studied. Using a home already built with another composite material, made up the closing of a window with the building blocks and found the thermal insulation, measuring external and internal temperatures of the blocks. The blocks had made good thermal insulation of the environment, resulting in differences of up to 12.6°C between the outer and inner faces. It will be shown the feasibility of using composite for the end proposed and chosen the most appropriate wording

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With a view to revitalizing public environments through criteria that include economy, tourism, aesthetics and respect for the environment, this paper proposes a model of kiosk manufactured with composite material blocks, to be employed as a public instrument. . The model consists of a structure composed of planned blocks and manufactured in cement-based composite, gypsum, ground and water, having the styrofoam inside filled with pet bottles of 500 ml dose. The social and environmental issue is the critical point of the work when it can, through the reuse of environmentally harmful materials such as polyethylene terephthalate PET, using such modules for the construction of various areas of Commerce, promoting the protection of the environment combined with the improvement of the quality of life of the population. The tourism factor, which is significant in the economy of the North, is also considered as the modulated kiosk has a visual aspect innovative and differentiated. The environmental issue is addressed by encouraging the reuse of PET material and EPS (polystyrene)