34 resultados para Segments of signs


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The anthropical action caused destruction of great part of the Atlantic forest remaining today around 7% to 8% of the original portion. A classical example of the degradation is the situation of the Pau-Brasil (Caesalpinia echinata Lam.) which appellant exploration summarized abruptly decreased the wild occurrence of the species. Besides the economic exploration and the threat of extinction, the plant shows some characteristics that its own physiology makes difficult the survival in natural conditions. For this reason, any strategy developed to conserve it should also guarantee ways for its multiplication. In these conditions, the only reasonable technology is micropropagation in vitro based on immature segments of Catullus (explants or internodes). However, in virtue of the threat of extinction, extractivism and fenology, the disponibility of the sources of explants are reduced. Then, to turn this around, the present research showed the hypothesis that arrange these explants would have as a solution to elaborate a bank of matrixes and the utilization of produced seedlings as source of explant. Then, assuming that the soil is a fundamental element for a good formation of the seedlings, there were tests in a greenhouse on the Laboratory of plant biotechnology at UFRN, from May to June of 2008 that showed the influence of the four different soils on the production of Pau-Brasil. The objective of this work was to make possible the seedlings production of the specie and from them to establish a bank of matrixes as source of explant to guarantee the continuity of the process of micropropagation, contributing with the preservation of the specie

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research area is located on the county of Tibau do Sul, in the east coast of Rio Grande do Norte State, about 80km south of the capital Natal. The tourism represents the main income activity and Pipa beach is the most visited beach in the city, annually receives a large influx of domestic and foreign tourists. Some recent studies have reported the occurrence of coastal erosion in this littoral, being the main objective of the research, analyze the existing coastal erosion, through two methodologies, the geoenvironmental mapping and beach morphodynamics. The geoenvironmental mapping was done from oblique aerial photographs and field visits, which sought to carry out first the geomorphological mapping, with the purpose of analyzing features that suggest susceptible areas to erosion, as areas without protection of natural dunes, marine terraces, or sandstones (beach-rocks and ferruginous sandstones), areas with the presence of gullies and stretches where the sea-cliffs were in direct contact with the action of the sea, representing the beginning of the beach profile. In the morphodynamic study sought to carry out the survey of the physical and morphological characteristics, the analysis of sediment grain of the beaches and finally the analysis of the morphodynamic parameters to generate a table of risk to erosion by sector of the beach. The morphodynamic parameters were defined by the methodology proposed by Short (2006), in which considers different patterns of dynamism on beaches with characteristics favorable and unfavorable to erosive profiles. The maps indicated different levels of risk to the segments of the beaches analyzed, suggesting risk to erosion low and low to moderate only in areas north and northwest of the beaches of Madeiro and Curral, and levels of moderate and high risk sectors in the south and southeast of these beaches . The beach of Pipa showed moderate levels of risk and moderate to high at the ends and high risk to erosion in the central portion. The study of the coastal environment, its morphological evolution, and areas with problems of erosion, are of fundamental importance to assist coastal management policies, giving grants for planning activities undertaken in these regions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry