78 resultados para Sagüi (Callithrix jacchus)
Resumo:
SILVA, H.P.A.; SOUSA, M.B.C. The pair-bond formation and its role in the stimulation of reproductive function in female common marmosets (collithrix Jacchus). International Journal of Primatology, v, 18, n.3, p.387-400, 1997.
Resumo:
SOUSA,M.B.C. et al. Reproductive Patterns and Birth Seasonality in a South-American Breeding Colony of Common Marmosets, Callithrix jacchus. Primates, v.40, n.2, p. 327-336, Apr. 1999.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The use of non-human primates in scientific research has contributed significantly to the biomedical area and, in the case of Callithrix jacchus, has provided important evidence on physiological mechanisms that help explain its biology, making the species a valuable experimental model in different pathologies. However, raising non-human primates in captivity for long periods of time is accompanied by behavioral disorders and chronic diseases, as well as progressive weight loss in most of the animals. The Primatology Center of the Universidade Federal do Rio Grande do Norte (UFRN) has housed a colony of C. jacchus for nearly 30 years and during this period these animals have been weighed systematically to detect possible alterations in their clinical conditions. This procedure has generated a volume of data on the weight of animals at different age ranges. These data are of great importance in the study of this variable from different perspectives. Accordingly, this paper presents three studies using weight data collected over 15 years (1985-2000) as a way of verifying the health status and development of the animals. The first study produced the first article, which describes the histopathological findings of animals with probable diagnosis of permanent wasting marmoset syndrome (WMS). All the animals were carriers of trematode parasites (Platynosomum spp) and had obstruction in the hepatobiliary system; it is suggested that this agent is one of the etiological factors of the syndrome. In the second article, the analysis focused on comparing environmental profile and cortisol levels between the animals with normal weight curve evolution and those with WMS. We observed a marked decrease in locomotion, increased use of lower cage extracts and hypocortisolemia. The latter is likely associated to an adaptation of the mechanisms that make up the hypothalamus-hypophysis-adrenal axis, as observed in other mammals under conditions of chronic malnutrition. Finally, in the third study, the animals with weight alterations were excluded from the sample and, using computational tools (K-means and SOM) in a non-supervised way, we suggest found new ontogenetic development classes for C. jacchus. These were redimensioned from five to eight classes: infant I, infant II, infant III, juvenile I, juvenile II, sub-adult, young adult and elderly adult, in order to provide a more suitable classification for more detailed studies that require better control over the animal development
Resumo:
Regarding the growing number of human beings with physical and mental pathologies associated to different stressor agents, attempts are being made to validate animal models with a close phylogenetic resemblance to man, to study stress response. Callithrix jacchus has been widely used in biomedical research, including on stress, but there is scarce information in the literature about how individual and social factors modulate stressor response in this species. This study uses 4 approaches to investigate the response of male and female adult C. jacchus, under situations of stress, and in the first we show evidence of the importance of this animal as an experimental model in research involving the hypothalamus-pituitary-adrenal axis. And we investigate if sex and baseline cortisol levels modulate the behavioral and hormonal response to separation. In two additional approaches investigate if type of social support (co-specific parent or non-parent) and social rank interfere in behavioral and hormonal when the animal are exposure to a new environment, paired with a co-specific (F2), exposure of the animal to a new environment, isolated (F3) or during reunion (F4). Finally, we also investigated the androgen levels in the males, with a focus on the challenge hypothesis, referring to environmental responsiveness and male-male exposure to relatives and non-relatives of C. jacchus. It was observed that: (1) the baseline cortisol of the animal is predictive of cortisol reactivity at separation; (2) males and females do not show dimorphism in the response of cortisol to stressors, although the females have higher baseline levels of this hormone and exhibit higher frequencies of anxiety-related behaviors; (3) only social support provided by relatives proved to be effective in buffering the cortisol response. In behavioral terms this response was dimorphic, showing that only the male dyads displayed an attenuated response to stress; (4) the males showed differences in cortisol levels as a function of social rank and study phases, whereas in the females no such alterations were observed. The males with indefinite dominance hierarchy (IDH) had reduced cortisol in F2 and F4, while the IDH females showed an increase in F3 and F4; (5) the males of relative and non-relative dyads did not exhibit variations in androgen levels as a function of a new environment. These results, taken together, (a) corroborate the use of C. jacchus as a good animal model for stress-related studies, given that they exhibit similar behavioral and physiological alterations to those of human beings in response to stressor agents; (b) point to the importance of considering individual and social modulating factors during experiments with stressors; (c) provide more reliable comparison parameters in studies where these primates are used as animal models, and (d) show that androgens vary as a function of genetic proximity (relative or non-relative) when the animals are faced with physical and social environmental challenges, thus providing important information for studying the challenge hypothesis in this species
Resumo:
Cortical interneurons are characterized by their distinct morphological, physiological and biochemical properties, acting as modulators of the excitatory activity by pyramidal neurons, for example. Various studies have revealed differences in both distribution and density of this cell group throughout distinct cortical areas in several species. A particular class of interneuron closely related to cortical modulation is revealed by the immunohistochemistry for calcium binding proteins calbindin (CB), calretinina (CR) and parvalbumin (PV). Despite the growing amount of studies focusing on calcium binding proteins, the prefrontal cortex of primates remains relatively little explored, particularly in what concerns a better understanding of the organization of the inhibitory circuitry across its subdivisions. In the present study we characterized the morphology and distribution of neurons rich in calcium-binding proteins in the medial, orbital and dorsolateral areas of the prefrontal cortex of the marmoset (Callithrix jacchus). Using both morphometric and stereological techniques, we found that CR-reactive neurons (mainly double bouquet and bipolar cells) have a more complex dendritic arborization than CB-reactive (bitufted and basket cells) and PV-reactive neurons (chandelier cells). The neuronal densities of CR- and CB-reactive cells are higher in the supragranular layers (II/III) whilst PV-reactive neurons, conversely, are more concentrated in the infragranular layers (V/VI). CR-reactive neurons were the predominant group in the three regions evaluated, being most prevalent in dorsomedial region. Our findings point out to fundamental differences in the inhibitory circuitry of the different areas of the prefrontal cortex in marmoset
Resumo:
The circadian system consists of multiple oscillators organized hierarchically, with the suprachiasmatic nucleus (SCN) as the master oscillator to mammalians. There are lots of evidences that each SCN cell is an oscillator and that entrainment depends upon coupling degree between them. Knowledge of the mechanism of coupling between the SCN cells is essential for understanding entrainment and expression of circadian rhythms, and thus promote the development of new treatments for circadian rhythmicity disorders, which may cause various diseases. Some authors suggest that the dissociation model of circadian rhythm activity of rats under T22, period near the limit of synchronization, is a good model to induce internal desynchronization, and in this way, enhance knowledge about the coupling mechanism. So, in order to evaluate the pattern of the motor activity circadian rhythm of marmosets, Callithrix jacchus, in light-dark cycles at the lower limit of entrainment, two experiments were conducted: 1) 6 adult females were submitted to the LD symmetric cycles T21, T22 and T21.5 for 60, 35 and 48 days, respectively; 2) 4 male and 4 female adults were subjected to T21 for 24 days followed by 18 days of LL, and then back to T21 for 24 days followed by 14 days of LL. Vocalizations of all animals and motor activity of each one of them were continuously recorded throughout the experiments, but the vocalizations were recorded only in Experiment 1. Under the Ts shorter than 24 h, two simultaneous circadian components appeared in motor activity, one with the same period of LD cycle, named light-entrained component, and the other in free-running, named non-light-entrained component. Both components were displayed for all the animals in T21, five animals (83.3%) in T21.5 and two animals (33.3%) in T22. For vocalizations both components were observed under the three Ts. Due to the different characteristics of these components we suggest that dissociation is result of partial synchronization to the LD cycle, wherein at least one group oscillator is synchronized to the LD by relative coordination and masking processes, while at least another group of oscillators is in free-running, but also under the influence of masking by the LD. As the T21 h was the only cycle able to promote the emergence of both circadian components in circadian rhythms of all Callithrix jacchus, this was then considered the lower entrainment limit of LD cycle promoter of dissociation in circadian rhythmicity of this species, and then suggested as a non-human primate model for forced desynchronization
Resumo:
The temporal allocation of the active phase in relation to light and dark cycle (LD) changes during puberty in humans, degus, rats and rhesus. In marmosets, the animal model used in several biomedical researches, there is evidence of a delay at the beginning of the active phase and an increase in total daily activity after onset of puberty. However, as this aspect was evaluated in animals maintained in natural environmental conditions, it was not possible to distinguish between the effects of puberty and of seasonality. Furthermore, as motor activity is the result of different behaviors in this species, it is also important to characterize the diurnal distribution of other behaviors in juvenile stage. With the aim of characterizing the circadian rhythm of motor activity and the diurnal profile of affiliative behavior in marmosets, the motor activity of 5 dyads juveniles between 4 and 12 months of age and their parents was recorded continuously for actímetro. The families were maintained under artificial LD 12:12 h, constant temperature and humidity. The duration of grooming behavior, proximity and social play among juveniles was recorded 2 times a week in sessions of 15 minutes each hour of the active phase. Afetr onset of puberty in juvenile, it was observed that there was no change in the parameters of circadian motor activity rhythm which were common to most animals. Despite the absence of pubertal modulation, it was observed that the circadian activity profiles have stronger synchrony between individuals of the same family than that of different families, which may indicate that the circadian activity rhythm was modulated by the dynamics of social interactions. In relation to age, the total daily activity and the ratio between evening and morning activity (EA/MA) were higher in juveniles than in adults, which may be associated with differences in the circadian timing system between age groups. Furthermore, the onset of the 10 consecutive hours of higher activity (M10) occurred earlier in adult males than in other members of the group, probably as a way to avoid competition for resources in one of the first activities of the day that is foraging. During the juvenile stage, there was an increase in total daily activity that may be associated with increased motor ability of juveniles. In addition to the circadian activity rhythm, the daytime profile of proximity and social play behaviors was similar between the 5th and 12th month of life of juveniles, in which the interval between 7- 10 h in the morning showed the highest values of proximity and lower values of play social. Moreover, the duration of the grooming showed a similar distribution to adults from the 8th month, wherein the higher values occurring at the interval between 11 14 h of day. Considering the results, the parameters of the circadian activity rhythm had a greater influence of social factors than puberty. In relation to age, there were no changes related to the allocation of the active phase in relation to the LD cycle, but total daily activity, the ratio AV/AM and the start of the M10 is possible to observe differences between juveniles and adults
Resumo:
The pregeniculate nucleus (PGN) of the primate s thalamus is an agglomerate neuronal having a cap shaped located dorsomedially to the main relay visual information to the cerebral cortex, the dorsal lateral geniculate nucleus (GLD). Several cytoarchitectonic, neurochemical and retinal projections studies have pointed PGN as a structure homologous to intergeniculate leaflet (IGL) of rodents. The IGL receives retinal terminals and appears to be involved in the integration of photic and non-photic information relaying them, through geniculo-hypothalamic tract (TGH), to the main circadian oscillator in mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus. Thus, the IGL participates in the control of the biological rhythm by modulating the activity of the SCN. Pharmacological and IGL injury studies conclude that it is critical in the processing of non-photic information which is transmitted to the SCN. Other studies have found that especially neurons immunoreactive to neuropeptide Y (NPY) respond to this type of stimulation, determined by its colocation with the FOS protein. Has not been determined if the PGN responds, expressing the FOS protein, to the non-photic stimulus nor the neurochemical nature of these cells. Thus, we apply a dark pulse in the specifics circadian phases and analyze the pattern of expression of FOS protein in PGN of the marmoset (Callithrix jacchus). We found that in all animals analyzed the FOS expression was higher in the experimental than in the control group. There was a higher expression of FOS when the dark pulse was applied during the subjective day between the groups. Still, a subregion of the PGN, known by immunoreactive to NPY, had a greater number of FOS-positive cells in relation to his other just close dorsal region. Our data corroborate the theory that the PGN and IGL are homologous structures that were anatomically modified during the evolutionary process, but kept its main neurochemical and functional characteristics. However, injury and hodological studies are still needed for a more accurate conclusion
Resumo:
The circadian timing system (CTS) is responsible for the generation and synchronization and the suprachiasmatic nucleus (SCN) of the hypothalamus has been described as the major circadian pacemaker in many mammalian species. The internal temporal organization managed by SCN is disturbed with aging bringing many pathological disorders that range from loss of complex cognitive performance to simple physiological functions. Therefore, our aim was perform a comparative study of the morphological aspects and neurochemical composition in the SCN of marmosets (Callithrix jacchus) adults and older using immunohistochemical techniques. We found morphometric and neurochemical changes in th SCN o folder animals in comparison to adults, among these a possible decreased in retinal projection to the SCN of older animals, found through a decline in CTB immunostaining, which can occur due atrophy and/or decreasing of fibers from the retinohypothalamic tract (RHT). The Klüver-Barrera histological technique strongly suggests a decrease in those fibers from RHT. Also, by means of a morphometric study, it is found a atrophy and numerical decline of neurons in SCN of aged animals, investigated by Nissl technique, and immunostaining with NeuN and calbindin. Relative optical density (ROD) analysis were used to evaluate the expression of some neurochemical components in SCN, such as GFAP expression, which was increased in older, result that indirectly reinforces that morphological changes occurs due the aging; the vasoactive intestinal polipeptide (VIP) showed no expression alteration in SCN of older animals; the serotonin (5-HT) was descreased in the dorsomedial portion of the SCN, and neurpeptide Y (NPY) apparently also decrease due to the increase of age. Many of these modifications were seen in other animals, such as rodents, human primates and non-human primates. These data about marmoset comes to add new information of the effect of aging on structures responsibles for the circadian rhytmicity, and that some behavioral changes controlled by th SCN, and founded in aged animals, may be caused by these morphological and neurochemical changes. Although some results have been quantitatively negative, qualitatively all analysis show significant change comparing adult and older animals, perhaps due to a low sampling number. In conclusion, the marmoset presents several morphological and neurochemical changes in the SCN of aged animals compared to adults, which may result in behavioral changes that favor pathology aging related
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The juvenile period represents the developmental phase between weaning and sexual maturity. Weaning occurs when the youngster does not receive direct care from the caretakers anymore. Individuals in the species Callithrix jacchus live in groups composed by the reproductive pair and successive twin sets. Cooperative care is the rule. Infants are weaned early, and from then on, food is provided by the adults in the group. These animals present high levels of social interactions, through play, grooming and social contact. During infant age, the twin becomes the main partner. There are few studies about the juvenile period, especially on Callithrix gender. The objective of this study was describing the pattern of activities and social interactions of four sets (one single and three twin sets) during juvenile phase in two Callithrix jacchus groups. We used instantaneous and continuous focal sampling for juveniles and scan sampling for adults behavioral recordings. Juveniles presented the same behavioral pattern as the adults relating the activity budget, in particular, foraging along the months. The composition of the diet was the same as that of the adults. Food transfer ended along the juvenile period. Social play as much as grooming were important socializing activities for the juveniles. The young individuals in the group were the main partners in social play, specially the twin. Adults were the main partners in grooming interactions. Scent marking differed between twins in the male/female sets, the female presenting the highest levels of marking. The juveniles were independent from adults in foraging activity. Social interaction varied according to group composition, but in general, interacted more with the twin and with the youngsters (infants and subadults), except in grooming. Even presenting many similarities, juveniles showed some differences between genders, which indicates the differentiation in behavior towards reproductive strategies early in the juvenile period
Resumo:
The Callitrichidae family is characterized by flexibility in its mating system, being possible to find monogamous, polyandrid and polygynic groups. Its social organization and mating system can be defined by the interaction between ecological and demographic factors plus the degree of relatedness among the individuals in the population. The objective of this work was to demonstrate the influence of relatedness and coexistence on the establishment and maintenance of social relations between Callithrix jacchus adult males. Four pairs of related adult males (CP), 4 pairs with coexistence between the animals in the pair (CC) and 4 pairs with no relatedness (SP) were studied. The pairs in the group CC had been kept in the same cage for at least 8 months before the experiment and the pairs in the group SP were put together at the beginning of the study. Each animal was observed 3 times/week for 2 months, in 15 min. sessions, through focal time sampling with instantaneous record each minute. In the first month, only the pair of males was kept in the cage (Phase I) and in the second month, a female was introduced into the cage (Phase II). The affiliative, agonistic and sexual interactions were registered. Affiliative interactions showed similar frequencies for all groups in phases. There was also no significant difference in the agonistic interactions of the CP, CC and SP males in Pase I, even considering that group SP exhibited higher levels of agonism. In Phase II, there was a statistically significant increase comparing to the others. The results demonstrate that relatedness and coexistence are of great importance for maintaining reprodutive and social stability inside the group. Nonetheless, in this study, only one of the males in the pair had sexual interations with the females, except for 2 pairs. This was assured through mate guarding and agonism directed to the potencial competitor. The most probable mating system would be functional monogamy, where the males would present low levels of competition, if there is relatedness and coexistence among them; on the other hand, a strong competition if there is no relatedness between the individuals. Even so, a polyandric system would also have to be considered
Resumo:
The principal zeitgeber for most of species is the light-dark photocycle (LD), though other environment factors as food availability, temperature and social cues may act. Daily adjustment of the circadian pacemaker may result from integration of environmental photic and non-photic cues with homeostatic cues. Characterization of non-photic effects on circadian timing system in diurnal mammals is scarce in relation to nocturnal, especially for ecologically significant cues. Thus, we analyzed the effect of conspecific vocalizations and darkness on circadian activity rhythm (CAR) in the diurnal primate Callithirx jacchus. With this objective 7 male adults were isolated in a room with controlled illumination, temperature (26,8 ± 0,2°C) and humidity (81,6 ± 3,6%), and partial acoustic isolation. Initially they were under LD 12:12 (~300:2 lux), and subsequently under constant illumination (~2 lux). Two pulses of conspecific vocalizations were applied in total darkness, separated by 22 days, at 7:30 h (external time) during 1 h. They induced phase delays at circadian times (CTs) 1 and 10 and predominantly phase advances at CTs 9 and 15. After that, two dark pulses were applied, separated by 14 days, during 1 h at 7:30 h (external time). These pulses induced phase delays at CTs 2, 3 and 18, predominantly phase advances at CTs 8, 10 and 19, and no change at CT 14. However, marmosets CAR showed oscillations in endogenous period and active phase duration influenced by vocalizations from animals outside the experimental room, which interfered on the phase responses to pulses. Furthermore, social masking and relative coordination with colony were observed. Therefore, phase responses obtained in this work cannot be attributed only to pulses. Afterwards, pulses of conspecific vocalizations were applied in total darkness at 19:00 h (external time), during 1 h for 5 consecutive days, and after 21 days, for 30 consecutive days, on attempt to synchronize the CAR. No animal was synchronized by these daily pulses, although oscillations in endogenous period were observed for all. This result may be due to habituation. Other possibility is the absence of social significance of the vocalizations for the animals due to random reproduction, since each vocalization has a function that could be lost by a mixture of sounds. In conclusion, conspecific vocalizations induce social masking and relative coordination in marmosets CAR, acting as weak zeitgeber
Resumo:
Callithrix jacchus studies involving differences between the sexes regarding the performance on tasks food still offers room for the investigation of some factors, among them there is the differences in color vision, which can directly influence the detection of visual clues on food items. This study aimed to analyze the performance of C. jacchus in tasks involving detection of food items. Some factors were analyzed such as the differences in performance between the sexes and behavioral categories present during the task. There were no differences in performance between the animals in carrying out the task, for all situations presented, examining the behavioral categories observed. The fact of the task to be very simple might have influenced the results, and it was not possible to observe differences in performance. Males and females showed the same performance in all analyzed situations. The sex differences were not found possibly due to the influence of external factors, such as the structure of the experimental apparatus. The animals are more efficient in carrying out the task during the morning, in comparison to the afternoon. The light may have been one of the factors that influenced these results. Due to the influence of other factors that probably contributed to these results, we believe that different results can be found in future work