192 resultados para Petroquimica
Resumo:
Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing
Resumo:
Boron is a semi-metal present in certain types of soils and natural waters. It is essential to the healthy development of plants and non-toxic to humans, depending on its concentration. It is used in various industries and it s present in water production coming from oil production. More specifically in Rio Grande do Norte, one of the largest oil producers on shore of Brazil, the relationship water/oil in some fields becomes more than 90%. The most common destination of this produced water is disposal in open sea after processing to meet the legal specification. In this context, this research proposes to study the extraction of boron in water produced by microemulsion systems for industrial utilization. It was taken into account the efficiency of extraction of boron related to surfactant (DDA and OCS, both characterized by FT-IR), cosurfactant (butanol and isoamyl alcohol), organic phase (kerosene and heptanes) and aqueous phase (solution of boron 3.6 ppm in alkaline pH). The ratio cosurfactant/ surfactant used was four and the percentage of organic phases for all points of study was set at 5%. It was chosen points with the highest percentage of aqueous phase. Each system was designed for three points of different compositions in relation to the constituents of a pseudoternary diagram. These points were chosen according to studies of phase behavior in pseudoternary diagrams made in previous studies. For this research, points were chosen in the Winsor II region. The excess aqueous solution obtained in these systems was separated and analyzed by ICP OES. For the data set obtained, the better efficiency in the extraction of boron was obtained using the system with DAC, isoamyl alcohol and heptanes, which extracted 49% in a single step. OCS was not viable to the extraction of boron by microemulsion system in the conditions defined in this study
Resumo:
Waste generated during the exploration and production of oil, water stands out due to various factors including the volume generated, the salt content, the presence of oil and chemicals and the water associated with oil is called produced water. The chemical composition of water is complex and depends strongly on the field generator, because it was in contact with the geological formation for thousands of years. This work aims to characterize the hydrochemical water produced in different areas of a field located in the Potiguar Basin. We collected 27 samples from 06 zones (400, 600, 400/600, 400/450/500, 350/400, A) the producing field called S and measured 50 required parameter divided between physical and chemical parameters, cations and anions. In hydrochemical characterization was used as tools of reasons ionic calculations, diagrams and they hydrochemical classification diagram Piper and Stiff diagram and also the statistic that helped in the identification of signature patterns for each production area including the area that supplies water injected this field for secondary oil recovery. The ionic balance error was calculated to assess the quality of the results of the analysis that was considered good, because 89% of the samples were below 5% error. Hydrochemical diagrams classified the waters as sodium chloride, with the exception of samples from Area A, from the injection well, which were classified as sodium bicarbonate. Through descriptive analysis and discriminant analysis was possible to obtain a function that differs chemically production areas, this function had a good hit rate of classification was 85%
Resumo:
With the increasing of demand for natural gas and the consequent growth of the pipeline networks, besides the importance of transport and transfer of oil products by pipeline, and when it comes to product quality and integrity of the pipeline there is an important role regarding to the monitoring internal corrosion of the pipe. This study aims to assess corrosion in three pipeline that operate with different products, using gravimetric techniques and electrical resistance. Chemical analysis of residues originated in the pipeline helps to identify the mechanism corrosive process. The internal monitoring of the corrosion in the pipelines was carried out between 2009 and 2010 using coupon weight loss and electrical resistance probe. Physico-chemical techniques of diffraction and fluorescence X-rays were used to characterize the products of corrosion of the pipelines. The corrosion rate by weight loss was analyzed for every pipeline, only those ones that has revealed corrosive attack were analyzed located corrosion rate. The corrosion potential was classified as low to pipeline gas and ranged from low to severe for oil pipelines and the pipeline derivatives. Corrosion products were identified as iron carbonate, iron oxide and iron sulfide
Resumo:
This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.
Resumo:
The several existing methods for oil artificial lifting and the variety of automation equipment for these methods many times lead the supervisory systems to be dedicated to a unique method and/or to a unique manufacturer. To avoid this problem, it has been developed the supervisory system named SISAL, conceived to supervise wells with different lifting methods and different automation equipments. The SISAL system is working in several Brazilian states but, nowadays, it is only supervising rod pump-based wells. The objective of this work is the development of a supervision module to the plunger lift artificial lift method. The module will have the same characteristics of working with automation hardware of many manufacturers. The module will be integrated to the SISAL system, incorporating the capacity to supervise the plunger lift artificial lift method.
Resumo:
From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.
Resumo:
Water injection is the most widely used method for supplementary recovery in many oil fields due to various reasons, like the fact that water is an effective displacing agent of low viscosity oils, the water injection projects are relatively simple to establish and the water availability at a relatively low cost. For design of water injection projects is necessary to do reservoir studies in order to define the various parameters needed to increase the effectiveness of the method. For this kind of study can be used several mathematical models classified into two general categories: analytical or numerical. The present work aims to do a comparative analysis between the results presented by flow lines simulator and conventional finite differences simulator; both types of simulators are based on numerical methods designed to model light oil reservoirs subjected to water injection. Therefore, it was defined two reservoir models: the first one was a heterogeneous model whose petrophysical properties vary along the reservoir and the other one was created using average petrophysical properties obtained from the first model. Comparisons were done considering that the results of these two models were always in the same operational conditions. Then some rock and fluid parameters have been changed in both models and again the results were compared. From the factorial design, that was done to study the sensitivity analysis of reservoir parameters, a few cases were chosen to study the role of water injection rate and the vertical position of wells perforations in production forecast. It was observed that the results from the two simulators are quite similar in most of the cases; differences were found only in those cases where there was an increase in gas solubility ratio of the model. Thus, it was concluded that in flow simulation of reservoirs analogous of those now studied, mainly when the gas solubility ratio is low, the conventional finite differences simulator may be replaced by flow lines simulator the production forecast is compatible but the computational processing time is lower.
Resumo:
Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.
Resumo:
Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.
Resumo:
Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization
Resumo:
Como os recursos de hidrocarbonetos convencionais estão se esgotando, a crescente demanda mundial por energia impulsiona a indústria do petróleo para desenvolver mais reservatórios não convencionais. Os recursos mundiais de betume e óleo pesado são estimados em 5,6 trilhões de barris, dos quais 80% estão localizados na Venezuela, Canadá e EUA. Um dos métodos para explorar estes hidrocarbonetos é o processo de drenagem gravitacional assistido com injeção de vapor e solvente (ES-SAGD Expanding Solvent Steam Assisted Gravity Drainage). Neste processo são utilizados dois poços horizontais paralelos e situados verticalmente um acima do outro, um produtor na base do reservatório e um injetor de vapor e solvente no topo do reservatório. Este processo é composto por um método térmico (injeção de vapor) e um método miscível (injeção de solvente) com a finalidade de causar a redução das tensões interfaciais e da viscosidade do óleo ou betume. O objetivo deste estudo é analisar a sensibilidade de alguns parâmetros operacionais, tais como: tipo de solvente injetado, qualidade do vapor, distância vertical entre os poços, porcentagem de solvente injetado e vazão de injeção de vapor sobre o fator de recuperação para 5, 10 e 15 anos. Os estudos foram realizados através de simulações concretizadas no módulo STARS (Steam Thermal, and Advanced Processes Reservoir Simulator) do programa da CMG (Computer Modelling Group), versão 2010.10, onde as interações entre os parâmetros operacionais, estudados em um modelo homogêneo com características de reservatórios semelhantes aos encontrados no Nordeste Brasileiro, foram observadas. Os resultados obtidos neste estudo mostraram que os melhores fatores de recuperação ocorreram para níveis máximos do percentual de solvente injetado e da distância vertical entre os poços. Observou-se também que o processo será rentável dependendo do tipo e do valor do solvente injetado
Resumo:
Today a major responsibility for the contamination of soil and groundwater and surface water are establishments known as gas stations of fuel which has attracted increasing attention from both the general population as the state agencies of environmental control due to leaks in storage tanks and mainly to disruption of pipe corrosion of tanks and pumping. Other services, like oil changes and car wash are also causes for concern in this type of establishment. These leaks can cause or waste produced, and the contamination of aquifers, serious health problems and public safety, since most of these stations located in urban areas. Based on this, the work was to evaluate soil contamination of a particular service station and fuel sales in the city of Natal, through the quantification of heavy metals like Cd, Cu, Cr, Ni, Pb, Zn of total organic carbon (TOC) and organic matter using different techniques such as optical emission spectrometry with inductively coupled plasma source (ICP OES), Total Organic Carbon analyzer and gravimetric analysis respectively. And also to characterize the soil through particle size analysis. Samples were taken in 21 georeferenced points and collected in the same period. The soils sampled in sampling stations P3, P5, P6, P10, P11, P12, P13, P14, P15, P17, P18 and P20 showed the smallest size fractions ranging from fine sand to medium sand. The other study sites ranged from fine sand to medium sand, except the point P8 showed that only the type size medium sand and P19, indicating a particle size of the coarse type. The small correlation of organic matter with the elements studied in this work suggests that these are not of anthropogenic origin but geochemical support
Resumo:
The worldwide concern regarding the use of sustainable energy and preserving the environment are determining factors in the search for resources and alternative sources of energy and therefore fuel less aggressive nature. In response to these difficulties Biodiesel has emerged as a good solution because it is produced from renewable sources, produces burns cleaner and is easily reproducible. This work was synthesized with biodiesel oil, sunflower via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the blends BX (a proportion of biodiesel X = 5, 10, 15 and 20 %). Atmospheric distillation of the analysis, performed in blends with and without BHT were collected residue generated by each sample and performed a study heat from the thermogravimetric analysis at a heating rate of 10 °C*min-1, nitrogen atmosphere and heating to 600 °C. According to the specifications of Resolution N 7/2008 for biodiesel, it was found that the synthesized material was in accordance with the specifications. For blends showed that the samples are in accordance with the Resolution of ANP N 42/2009. From the TG / DTG curves of the samples of biodiesel, blends and waste can be seen that these show a single loss of thermal decomposition concerning constituents present in each sample. The blends without BHT with ratios of 5%, 10% and 15% biodiesel showed a lower amount of waste (1,07%; 1,09% e 1,10%) to mineral diesel (1,15%). Therefore, it is concluded that the addition of biodiesel with diesel mineral can improve some physico-chemical parameters, but also, depending on the added amount, decreasing the amount of waste generated. This fact is of great importance because the carbonaceous residue can cause problems in mechanical equipment and parts for vehicles, causing more frequent maintenance, and this is not desirable
Resumo:
The retail fuel stations are partially or potentially polluters and generators of environmental accidents, potentially causing contamination of underground and surface water bodies, soil and air. Leaks in fuel retail stations´ underground storage systems are often detected in Brazil and around the world. Monoaromatic hydrocarbons, BTEX (benzene, toluene, ethylbenzene and xylenes) and polycyclic aromatic hydrocarbons (PAHs) are an indication of the presence of contamination due to its high toxicity. This paper presents a case study of contamination in a Fuel Retail Station by petroleum derivative products in the city of Natal. For identification and quantification of the hydrocarbons, EPA analytical methods were used. The values of benzene quantified by EPA method 8021b CG-PID/FID, ranged from 1.164 to 4.503 mg.Kg-1 in soil samples, and from 12.10 to 27,639 μg.L-1 in underground water samples. Among the PAHs, naphthalene and anthracene showed the most significant results in soil samples, 0.420 to 15.46 mg.Kg-1 and 0.110 to 0,970 mg.Kg-1, respectively. In underground water samples, the results for Naphthalene varied between 0.759 and 614.7 μg.L-1. PAHs were quantified by EPA Method 8270 for GCMS. All of the results for the chemical analysis were compared with the values for the CONAMA 420/2009 resolution. The results for benzene (27,639 μg.L-1) showed levels highly above the recommended by the CONAMA 420 resolution, wherein the maximum permissible for underground water is 5 μg.L-1. This is a worrying factor, since underground water makes up 70% of the city of Natal´s water supply