32 resultados para Pavimentos : Deformação : Ensaios
Resumo:
The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive
Resumo:
The new oil reservoirs discoveries in onshore and ultra deep water offshore fields and complex trajectories require the optimization of procedures to reduce the stops operation during the well drilling, especially because the platforms and equipment high cost, and risks which are inherent to the operation. Among the most important aspects stands out the drilling fluids project and their behavior against different situations that may occur during the process. By means of sedimentation experiments, a correlation has been validated to determe the sedimentation particles velocity in variable viscosity fluids over time, applying the correction due to effective viscosity that is a shear rate and time function. The viscosity evolution over time was obtained by carrying out rheologic tests using a fixed shear rate, small enough to not interfere in the fluid gelling process. With the sedimentation particles velocity and the fluid viscosity over time equations an iterative procedure was proposed to determine the particles displacement over time. These equations were implemented in a case study to simulate the cuttings sedimentation generated in the oil well drilling during stops operation, especially in the connections and tripping, allowing the drilling fluid project in order to maintain the cuttings in suspension, avoiding risks, such as stuck pipe and in more drastic conditions, the loss of the well