133 resultados para Painéis de cimento


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The developed study proposes a new computer modeling efficient and easy to apply in usual project situations to evaluate the interaction between masonry panels and support structure. The proposed model simulates the behavior of the wall exclusively using frame finite elements, thus compounding an equivalent frame. The validation was performed in two ways: firstly, through the analysis of various panels of generic plans, comparing the results obtained from equivalent frame model with the ones from a reference model, which uses shell finite elements in discretization of the walls; and in a second step, comparing with the results of the experimental model of Rosenhaupt. The analyzes considered the linear elastic behavior for materials and consisted basically in the evaluation of vertical displacements and efforts in support beams, and tensions at the base of walls. Was also evaluated, from flat and threedimensional modeling of some walls from a real project, important aspects of the wall-beam interaction, e.g.: the presence of openings of doors and windows, arranged in any position; conditions of support and linking of beams; interference of moorings between walls; and consideration of wind action. The analysis of the achieved results demonstrated the efficiency of the proposed modeling, since they have very similar aspects in the distribution of stresses and efforts, always with intensities slightly larger than those of the reference and experimental models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of industrial wastes has been increased more and more in recent decades, motivating studies about a correct sustainable allocation and that also represents advantages for their generators. In this context, are included two companies of cleaning products niche, located in São José do Mipibu/RN, that produces industrial sludge at a sewage treatment plant, and that is the main approach of this research. Given this, it was studied the incorporation potentiality of this sludge as a mineral addition in cement matrix for concrete production due it high capacity of wastes immobilization inside this material, which are subsequently used in the company for making precast articles. Were added different sludge concentrations (5, 10, 15 and 20%) in a common trait (1: 2: 3), and evaluated their techniques and microstructural implications via workability test in fresh state and compressive strength, full porosity and scanning electron microscopy (SEM) in the hardened state. The results demonstrated the feasibility of the process both from a technical and environmental view as economical. All concretes produced with residue showed an increase of workability given the nature of the waste that had surfactants substances capable of adsorbing tiny particles of air into the batter. However, for all concentrations were obtained lower compressive resistances than standard concrete, with a reduction of 39% for samples with 20% of sludge. This are attributed mainly to an increase of porosity in the transition zone of these material, resulting from increased formation of ettringite at the detriment to the formation of other compounds, but which still allows the use of these for the manufacture of concrete articles with non-structural nature, such as precast floor. In addition, the water absorption and void ratio increased slightly for all samples, except the concrete with 20% of waste that has a reduction for the last parameter. Given this context, the recommended maximum level is 20%, constituting a significant proportion and able to allocate sustainably all waste generated in the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement pastes used in cementing oil wells operations are prepared according to the specific characteristics of each well. The physical properties requested for each folder formulation depend on the temperature and pressure of the well to be cemented. The rheological properties of the pulp are important control parameter for efficiency in transportation and positioning the folder during the cementing operation. One of the main types of additive used for the adjustment of rheological properties of cement pastes is the dispersant additive. This work aims to study the influence of variation of the time of addition of the polycarboxylate (0, 5, 10 and 15 minutes) in cement pastes, considering the initial periods of hydration of cement particles as fundamental point for better performance dispersant additive. Pastes were prepared with a density set at 15.6 lb/gal (1.87 g/cm3) and polycarboxylate concentrations ranging from 0.01 gpc to 0.05 gpc circulation temperature (BHCT) of 51°C and static temperature (BHST) of 76 C. The pastes were characterized from a rheological measurements, volume filtered, thickening time and resistance to compression formulations. Also were carried out tests Diffraction X-ray (XRD) and Scanning Electron Microscopy (MEV). The results showed that the addition of policaboxilato after 15 minutes decreased by 70% the values of rheological parameters. According to results of DRX and MEV, the addition of dispersant after 15 minutes did not affect the chemical reactions and subsequent formation of cement hydration products. A study of the economic feasibility to realize the financial benefits of the technique, which can be seen only with the use of the technique in this work to reduce the cost of production of cement paste was carried out, can get up to $ 1015.00 for each folder 100 barrels produced with said formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement pastes used in cementing oil wells operations are prepared according to the specific characteristics of each well. The physical properties requested for each folder formulation depend on the temperature and pressure of the well to be cemented. The rheological properties of the pulp are important control parameter for efficiency in transportation and positioning the folder during the cementing operation. One of the main types of additive used for the adjustment of rheological properties of cement pastes is the dispersant additive. This work aims to study the influence of variation of the time of addition of the polycarboxylate (0, 5, 10 and 15 minutes) in cement pastes, considering the initial periods of hydration of cement particles as fundamental point for better performance dispersant additive. Pastes were prepared with a density set at 15.6 lb/gal (1.87 g/cm3) and polycarboxylate concentrations ranging from 0.01 gpc to 0.05 gpc circulation temperature (BHCT) of 51°C and static temperature (BHST) of 76 C. The pastes were characterized from a rheological measurements, volume filtered, thickening time and resistance to compression formulations. Also were carried out tests Diffraction X-ray (XRD) and Scanning Electron Microscopy (MEV). The results showed that the addition of policaboxilato after 15 minutes decreased by 70% the values of rheological parameters. According to results of DRX and MEV, the addition of dispersant after 15 minutes did not affect the chemical reactions and subsequent formation of cement hydration products. A study of the economic feasibility to realize the financial benefits of the technique, which can be seen only with the use of the technique in this work to reduce the cost of production of cement paste was carried out, can get up to $ 1015.00 for each folder 100 barrels produced with said formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for environmental comfort in construction systems within the insulation and thermal comfort, plus the advent of new laws regulating the minimum requirements of comfort, disposal of solid industrial waste, construction waste, the requirements of consumers by adopting construction methods "cleaner", encouraged the development of this work. Aims technologically characterize the composite proposed in three types of samples (10%, 30% and 50% of thermoset plastic industrial waste) and raw materials: gypsum waste, cement and plastic thermosetting industrial waste in order to produce the composite with properties of thermal insulation: conductivity, thermal diffusivity, specific heat and resistivity. The physical, structural and morphological properties of the raw materials were investigated by thermogravimetry analysis (TG / DSC), X-ray diffraction (DRX), X-ray fluorescence (FXR) and scanning electron microscopy (MEV). Obtaining mechanical properties through the compression strength test. The analysis results indicate characteristics suitable for cement matrix composite production with the addition of thermosetting plastic industrial waste and gypsum waste, with potential application of these materials in composites with properties of thermal insulation. Finally, assessing what proportion showed up with better performance. Considering the analysis and testing carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for environmental comfort in construction systems within the insulation and thermal comfort, plus the advent of new laws regulating the minimum requirements of comfort, disposal of solid industrial waste, construction waste, the requirements of consumers by adopting construction methods "cleaner", encouraged the development of this work. Aims technologically characterize the composite proposed in three types of samples (10%, 30% and 50% of thermoset plastic industrial waste) and raw materials: gypsum waste, cement and plastic thermosetting industrial waste in order to produce the composite with properties of thermal insulation: conductivity, thermal diffusivity, specific heat and resistivity. The physical, structural and morphological properties of the raw materials were investigated by thermogravimetry analysis (TG / DSC), X-ray diffraction (DRX), X-ray fluorescence (FXR) and scanning electron microscopy (MEV). Obtaining mechanical properties through the compression strength test. The analysis results indicate characteristics suitable for cement matrix composite production with the addition of thermosetting plastic industrial waste and gypsum waste, with potential application of these materials in composites with properties of thermal insulation. Finally, assessing what proportion showed up with better performance. Considering the analysis and testing carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major current challenges for oilwell companies is the extraction of oil from evaporitic zones, also known as pre-salt basins. Deep reservoirs are found under thick salt layers formed from the evaporation of sea water. Salt layers seal the flow of oil from underneath rock formations, which store hydrocarbons and increase the probability of success in oil and gas exploration. Oilwells are cemented using Portland-based slurries to promote mechanical stability and zonal isolation. For pre-salt oilwells, NaCl must be added to saturate the cement slurries, however, the presence of salt in the composition of slurries affects their overall behavior. Therefore, the objective of the present study was to evaluate the effect of the addition of 5 to 25% NaCl on selected properties of Portland-based slurries. A series of tests were carried out to assess the rheological behavior, thickening time, free water and ultrassonic compressive strength. In addition, the slurries were also characterized by thermal analysis, X ray diffraction and scanning electron microscopy. The results showed that the addition of NaCl affected the thickening time of the slurries. NaCl contents up to 10% shortened the thickening time of the slurries. On the other hand, concentrations in excess of 20% not only extended the thickening time, but also reduced the strength of hardened slurries. The addition of NaCl resulted in the formation of a different crystalline phase called Friedel´s salt, where free chlorine is bonded to tricalcium aluminate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is to study the characteristics and technological properties of soil-cement bricks made from binary and ternary mixtures of Portland cement, sand, water, with or without addition of gravel from the drilling of oil wells, which could be used by industry, aiming to improve its performance and reduce cost by using the residue and, consequently, increasing its useful life. The soil-cement bricks are one of the alternatives to masonry construction. These elements, after a short curing period, provide compressive strength similar to that of solid bricks and ceramic blocks, and the higher the resistance the higher the amount of cement used. We used the soil from the city of São José do Mipibu / RN, the banks of the River Baldun, cement CPIIZ-32 and residue of drill cuttings from oil wells drilling onshore wells in the town of Mossley, RN, provided Petrobras. To determine the optimum mix, we studied the inclusion of different residues (100%, 80%, 70%, 60% and 50%) where 15 bodies were made of the test piece. The assessment was made of bricks made from simple compression tests, mass loss by immersion and water absorption. The experimental results proved the efficiency and high utilization of the waste from the drilling of oil wells, making the brick-cement-soil residue with a higher strength and lower water absorption. The best result in terms of mechanical strength and water absorption for the ternary mixture was 10% soil, 14% cement and 80% residue. In terms of binary mixtures, we obtained the best result for the mix-cement residue, which was 14% cement incorporated in the residue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.