34 resultados para Mouth.
Resumo:
This work embraces the application of Landsat 5-TM digital images, comprising August 2 1989 and September 22 1998, for temporal mapping and geoenvironmental analysis of the dynamic of Piranhas-Açu river mouth, situated in the Macau (RN) region. After treatment using several digital processing techniques (e.g. colour composition in RGB, ratio of bands, principal component analysis, index methods, among others), it was possible to generate several image products and multitemporal maps of the coastal morphodynamics of the studied area. Using the image products it was possible the identification and characterization of the principal elements of interest (vegetation, soil, geology and water) in the surface of the studied area, associating the spectral characteristics of these elements to that presented by the image products resulting of the digital processing. Thus, it was possible to define different types of soils: Amd, AQd6, SK1 and LVe4; vegetation grouping: open arboreal-shrubby caatinga, closed arborealshrubby caatinga, closed arboreal caatinga, mangrove vegetation, dune vegetation and areas predominately constituted by juremas; geological units: quaternary units beach sediments, sand banks, dune flats, barrier island, mobile dunes, fixed dunes, alluvium, tidal and inundation flats, and sandy facies of the Potengi Formation; tertiary-quaternary units Barreiras Formation grouped to the clayey facies of the Potengi Formation, Macau Formation grouped to the sediments of the Tibau Formation; Cretaceous units Jandaíra Formation; moreover it was to identify the sea/land limit, shallow submersed areas and suspended sediments. The multitemporal maps of the coastal morphodynamics allowed the identification and a semi-quantitative evoluation of regions which were submitted to erosive and constructive processes in the last decade. This semi-quantitative evoluation in association with an geoenvironmental characterization of the studied area are important data to the elaboration of actions that may minimize the possible/probable impacts caused by the implantation of the Polo Gas/Sal and to the monitoring of areas explorated by the petroleum and salt industries
Resumo:
The study area is located in the northern coast of Rio Grande do Norte State comprising the mouth of Açu-Piranhas river including the cities of Porto do Mangue e Areia Branca. The local geological setting comprises Cretaceous, Tertiary and Quaternary geological units of the Potiguar Basin. One is about a region of high morphologic instability due to action of the rigorous dynamic coastal processes, beyond the intense human activities mainly for the performance of the petroliferous industry, salt farms and tanks of shrimp industry.For the accomplishment of this work Landsat 5 TM and Landsat 7 ETM + from four distinct dates were used as cartographic base, in which one applied techniques of digital processing to elaborate thematic maps of the existing natural resources to support the geologic and geomorphologic characterization and the soil and landuse maps. The strategy applied was the interpretation of multitemporal images from aerial and orbital remote sensors alIied to the terrain truth recognition, integrated through a Geographic Information System. These activities had alIowed the production of Sensitivity Maps of the Coast to Oil Spilling for the area, on the basis of the Coastal Sensibility Index. Taking into account the seasons were created maps to distinct datas: July 2003 represents the winter months that presented a sensibility lower when compared with the month of December 2003. For the summer months greater sensitivity is due to the hydrodynamic data that suggest a lesser capacity of natural cleanness of the oil and its derivatives in spilling case.These outcomes are an important and useful database to support an assessment to a risk situation and to taking decision in the face of an environmental disaster with oil spilling in coastal area, alIowing a complete visualization of the area and identifying all portions in the area with thei environmental units and respective Coastal Sensibility Index.
Resumo:
The aim of this study was the seasonal characterization of the morphology, sedimentology and hydrodynamic of the Açu, Cavalos and Conchas estuaries. These estuaries are inserted in a semi-arid climate area and form the mouth of the hydrographic basin of the Piranhas-Açu river, that represent the discharge of the largest watershed in the state. They are embedded in an environment consisting of a fluvial-marine floodplain, mangrove ecosystem, sandbanks, fields of dunes, spits and sandy beaches. Adjacent to the natural units are the main local socioeconomic activities (oil industry, salt industry, shrimp farming, fishing and tourism) are dependent on this river and its conservation. The environmental monitoring is necessary because it is an area under constant action of coastal processes and at high risk of oil spill. The acquisition and interpretation of hydrodynamic, sonographic and sediment data was conducted in two campaigns, dry season (2010) and rainy season (2011), using respectively the current profiler ADCP Doppler effect, the side-scan sonar and Van Veen sampler. In these estuaries: Açu, Cavalos and Conchas were identified the following types of bedforms: flatbed and Dunes 2-D and 3-D (small to medium size), generated at lower flow regime (Froude number <1). Structures such as ripples were observed in the Açu estuary mouth. The higher values of flow discharge and velocity were recorded in the Açu estuary (434,992 m³.s-¹ and 0,554 m.s-¹). In rainy season, despite the record of highest values of discharge and flow velocities at the mouth, the energy rates upstream did not differ much from the data of the dry season. However, in all estuaries were recorded an increase in speed and flow, with reservation to the flow in the Açu estuary and flow at the mouth of the Conchas estuary. Sediment grain sizes tend to increase towards the mouth of the estuary and these ranged from very fine sand to very coarse sand, medium sand fraction being the most recurrent. Based on the data acquired and analyzed, the estuaries Açu, Cavalos and Conchas are classified as mixed , dominated by waves and tides. According to their morphology, they are classified as estuaries constructed by bar and according to the classification by salinity, estuaries Conchas and Cavalos were ranked as hypersaline estuaries, and Açu as hypersaline and vertically well mixed type C
Resumo:
The brazilian marginal basins have a huge potential to generate and accumulate petroleum. Incised valleys which are eroded in response to a fall of relative sea level are related to potential reservoir as well, modern drowned-valley estuaries serve as harbors to petroleum and salt industries, fisheries, waste-disposal sites and recreational areas for a significant fraction of the world s population. The combined influence of these factors has produced a dramatic increase in research on modern and ancient incised-valley systems. This research is one expression of this interest. The integrated use of satellites images and high resolution seismic (bathymetry, sides scan sonar) was used on the Apodi River mouth-RN to characterizes the continental shelf This area is located at the Potiguar Basin in the NE Brazilian Equatorial Atlantic margin. Through bathymetric and side scan sonar data processing, a digital Terrain Model was developed, and a detailed geomorphologic analysis was performed. In this way was possible to recognize the geomorphologic framework and differents sismofacies, which may influence this area. A channel extending from the ApodiMossoró river mouth to the shelf edge dominates the investigated area. This structure can be correlated with the former river valley developed during the late Pleistocene sea level fall. This channel has two main directions (NW-SE and NE-SW) probably controlled by the Potiguar Basin structures. The western margin of the channel is relatively steep and pronounced whereas the eastern margin consists only of a gentle slope. Longitudinal bedforms and massive ridges also occur. The first are formed doe to the shelf sediment rework and the reef-like structures probably are relics of submerged beachrock-lines indicating past shoreline positions during the deglacial sea-level rise. The sub-bottom seismic data allow the identification of different sismic patterns and a marcant discontinuity, interpreted as the Upper