32 resultados para Molar ratio


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, biodiesel was produced from castor oil that was a byproduct glycerin. The molar ratio between oil and alcohol, as well as the use of (KOH) catalyst to provide the chemical reaction is based on literature. The best results were obtained using 1 mol of castor oil (260g) to 3 moles of methyl alcohol (138g), using 1.0% KOH as catalyst at a temperature of 260 ° C and shaken at 120 rpm. The oil used was commercially available, the process involves the reaction of transesterification of a vegetable oil with methyl alcohol. The product of this reaction is an ester, biodiesel being the main product and the glycerin by-product which has undergone treatment for use as raw material for the production of allyl alcohol. The great advantage of the use of glycerin to obtain allyl alcohol is that its use eliminates the large amount of waste of the biodiesel and various forms of insult to the environment. The reactions for the formation of allyl alcohol was conducted from formic acid and glycerin in a ratio 1/1, at a temperature of 260oC in a heater blanket, being sprayed by a spiral condenser for a period of 2 hours and the product obtained contains mostly the allylic alcohol .. The monitoring of reactions was performed by UV-Visible Spectrophotometer: FTIR Fourier transform, the analysis showed that these changes occur spectrometer indicating the formation of the product allylic alcohol (prop-2-en-1-ol) in the presence of water, This alcohol was appointed Alcohol GL. The absorption bands confirms that the reaction was observed in (υ C = C) 1470 -1600 cm -1 and (υ CO), 3610-3670 attributed to C = C groups and OH respectively. The thermal analysis was carried out in a thermogravimetric analyzer SDT Q600, where the mass and temperature are displayed against time, that allows checking the approximate rate of heating. The innovative methodology developed in the laboratory (LABTAM, UFRN), was able to treat the glycerine produced by transesterification of castor oil and used as raw material for production of allyl alcohol, with a yield of 80%, of alcohol, the same is of great importance in the manufacture of polymers, pharmaceuticals, organic compounds, herbicides, pesticides and other chemicals

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oily sludge is a complex mix of hydrocarbons, organic impurities, inorganic and water. One of the major problems currently found in petroleum industry is management (packaging, storage, transport and fate) of waste. The nanomaterials (catalysts) mesoporous and microporous are considered promising for refining and adsorbents process for environment protection. The aim of this work was to study the oily sludge from primary processing (raw and treated) and vacuum residue, with application of thermal analyses technique (pyrolysis), thermal and catalytic pyrolysis with nanomaterials, aiming at production petroleum derived. The sludge and vacuum residue were analyzed using a soxhlet extraction system, elemental analysis, thin layer chromatography, thermogravimetry and pyrolysis coupled in gas chromatography/mass spectrometry (Py GC MS). The catalysts AlMCM-41, AlSBA-15.1 e AlSBA-15.2 were synthesized with molar ratio silicon aluminum of 50 (Si/Al = 50), using tetraethylorthosilicante as source of silicon and pseudobuhemita (AlOOH) as source of aluminum. The analyzes of the catalysts indicate that materials showed hexagonal structure and surface area (783,6 m2/g for AlMCM-41, 600 m2/g for AlSBA-15.1, 377 m2/g for AlSBA-15.2). The extracted oily sludge showed a range 65 to 95% for organic components (oil), 5 to 35% for inorganic components (salts and oxides) and compositions different of derivatives. The AlSBA-15 catalysts showed better performance in analyzes for production petroleum derived, 20% increase in production of kerosene and light gas oil. The energy potential of sludge was high and it can be used as fuel in other cargo processed in refinery