36 resultados para Microstrip patch resonator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis for the radiation characteristics of rectangular microstrip antenna using metamaterial substrate. The full wave analysis is performed in the Fourier transform domain through the application of the Transverse Transmission Line - TTL method. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. The general equations for the electromagnetic fields of the antenna are developed using the Transverse Transmission Line - TTL method. Imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency and return loss for different configurations and substrates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications that needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of y and y . This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular and triangular patches, to obtaining the resonance frequency and radiation pattern of each structure. This method is applied for the treatment of the fields in stacked structures. The Homogenization theory will be applied to obtaining the effective permittivity for s and p polarizations of the substrate composed of PBG material. Numerical results for the triangular and rectangular antennas with single layer, multilayers resonators with triangular and rectangular patches are presented (in photonic and isotropic substrates). Conclusions and suggestions for continuity of this work are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metamaterials have attracted great attention in recent decades, due to their electromagnetic properties which are not found in nature. Since metamaterials are now synthesized by the insertion of artificially manufactured inclusions in a specified homogeneous medium, it became possible for the researcher to work with a wide collection of independent parameters, for example, the electromagnetic properties of the material. An investigation of the properties of ring resonators was performed as well as those of metamaterials. A study of the major theories that clearly explain superconductivity was presented. The BCS theory, London Equations and the Two-Fluid Model are theories that support the application of superconducting microstrip antennas. Therefore, this thesis presents theoretical, numerical and experimental-computational analysis using full-wave formalism, through the application of the Transverse Transmission Line – LTT method applied in the Fourier Transform Domain (FTD). The LTT is a full wave method, which, as a rule, obtains the electromagnetic fields in terms of the transverse components of the structure. The inclusion of the superconducting patch is performed using the complex resistive boundary condition. Results of resonant frequency as a function of antenna parameters are obtained. To validate the analysis, computer programs were developed using Fortran, simulations were created using the commercial software, with curves being drawn using commercial software and MATLAB, in addition to comparing the conventional patch with the superconductor as well as comparing a metamaterial substrate with a conventional one, joining the substrate with the patch, observing what improves on both cas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstrip antennas in your simplest form consist of a ground plane and a dielectric substrate which supports a conductive tape. As these antennas have some limitations, this work presents a study of anisotropic substrates, as well as some results in microstrip antennas with circular patch, aiming to overcome these limitations, especially in applications at 4G technology. These anisotropic substrates are those in which electrical permittivity and magnetic permeability are represented by tensors of second order. The study consists of a theoretical analysis of substrates and development of a mathematical formalism, the Transverse Transmission Line Method, aimed the application of these substrates in microstrip antennas. Among the substrates used in this study, there are the ferrimagnetic and metamaterials, in which some miniaturizations of the antennas are achieved. For antennas with circular patch, are considered arrays and modified ground planes in order to achieve improvement in parameters, in particular, gain and bandwidth. Several simulations have been made and antennas were constructed so that the measured values could be compared with the simulated values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).