44 resultados para Estabilidade genética
Resumo:
The gray mold, causal organism Amphobotrys ricini, is one of the major diseases of castor bean. Difficulties in managing plant disease arises form the limited understanding of the genetic structure of A. ricini, their complexity and variability make it difficult to control. Genetic structure can be used to infer the relative impact of different forces that influence the evolution of pathogen populations, that allow to predict the potencial for pathogen populations to envolve in agricultural ecosystems. Growers protect their crop by applying fungicides, but there aren t fungicides to provide significant control of gray mold of castor bean. The objectives of this work were use RAPD to determine the genetic structure of A. ricini subpopulations in Paraíba and assay the sensitivity of A. ricini isolates to azoxystrobin and carbendazim. To determine the genetic structure of A. ricini subpopulations in Paraíba, 23 isolates were colleted from two different geographic location (subpopulation). These isolates were analysed by RAPD using 22 random decamer primers, purchased from OPERON, produced a total of 80 markers polimorphics. The resulting matrixes were analysed using PopGene version 1.32. Sensitivity to azoxystrobin and carbendazim of 30 isolates, colleted form Paraíba and Alagoas, was estimated based on spore germination and colony growth inhibition. The stock solutions were added toV8 medium after sterilization to produce final concentrations of 0, 0.01, 0.1, 1, 10, and 100 µg/ml of carbendazim and 0, 0.001, 0.01, 0.1, 1, and 10 µg/ml of azoxystrobin. All statistical analyses were performed using SAS to estimate the dose that inhibited fungal growth by 50% (ED50 values). The genetic diversity within subpopulations (Hs=0,271) accounted for 92% of the total genetic diversity (Ht=0,293), while genetic diversity between subpopulations (Gst = 0,075) represented only 7,5%. The estimated number of migrants per generation (NM ) was 6,15. Nei s average gene identity across 80 RAPD loci was 0,9468. Individual ED50 values, for the 30 isolates screened for their sensitivity to azoxystrobin, ranged From a maximum of 0,168 µg/ml to a minimum of 0,0036 µg/ml. The ED50 values for carbendazim varied within the range of 0,026 to 0,316 µg/ml
Resumo:
Broadly speaking, the concept of gene therapy involves the transfer of a genetic material into a cell, tissue, or organ in order to cure a disease or at least improve the clinical status of a patient. Making it simple, gene therapy consists in the insertion of functional genes into cells containing defective genes by substituting, complementing or inhibiting them. The achievement of a foreigner DNA expression into a population of cells requires its transfer to the target. Therefore, it is a key issue to create systems able to transfer and protect the DNA until it reaches the target, the vectors. The disadvantages related to the use of viral vectors have encouraged efforts to develop emulsions as non-viral vectors. In fact, they are easily produced, present controllable stability and enable transfection. The aim of this work was to develop an emulsion for gene therapy and evaluate its ability to compact nucleic acids by the development of a complex with the plasmid pIRES2-EGFP. The first step was to determine the Hydrophilic Lipophilic Balance (HLB) of the Captex® 355 (oily internal phase of the emulsion) through long and short term stability assays. Based on the results, emulsions composed of Captex® 355, Tween 20® and Span 60® with 10.7 HLB were produced by three different methods: phase inversion, spontaneous emulsification and sonication. The results showed that the lowest diameter and best stability of the emulsions were achieved by the sonication method. The cationic emulsions were made by adding DOTAP to the basic emulsion. Its association with pIRES2-EGFP was evaluated by electrophoresis. Several rates of emulsion and DNA were evaluated and the results showed that 100% of the complex was formed when the rate DOTAP/DNA(nmol/µg) was 130. In conclusion, the overall results show the ability of the proposed emulsion to compact pIRES2-EGFP, which is a requirement to a successful transfection. Therefore, such formulation may be considered a promising candidate for gene therapy
Resumo:
The objective of this study was to identify DNA polymorphisms at the genes leptin, β-lactoglobulin and pituitary-specific transcription factor in three genetic groups of Holstein x Guzerat dairy cows and investigate the relationship between their genotypes and the composition and quality of milk of dairy cows. Samples were collected in August 2009, being 113 blood samples from lactating crossbred cows and 58 milk samples. For analysis of DNA polymorphisms blood samples were collected, analyzed later in the Genetic Laboratory affiliated to the Zootechny Institute of São Paulo and individual milk samples were collected according to standards established by the laboratory of Management Program of Northeast Dairy Herds (PROGEN), at Federal Rural University of Pernambuco (UFRPE) for analysis of milk composition and quality. The characterization of genotypes was performed by PCR-RFLP, for which were designed specific primers for each studied gene and restriction enzymes Kpn2I, HaeIII and HinfI that cut the DNA of the following genes: leptin, β-lactoglobulin and a PIT, respectively. The leptin estimate genotypic frequence were CC 0.112, TT 0.225 and CT 0.661, for β-lactoglobulin were AA 0.136, AB 0.323 and BB 0.539, and for PIT were ++ 0.655, -- 0.311 and +- 0.032. The results show that the population is in Hardy-Weinberg disequilibrium for leptin, β-lactoglobulin and a PIT due to excess of heterozygotes in the population, however, as these genes are associated with the milk production it is considered that the animals have genetic potential for milk production in the Brazilian semi-arid conditions. Through the characterization of the studied herd there were not found implications of the polymorphism of leptin, β-lactoglobulin and PIT in the composition and quality of milk from cows in the different genetic groups 1/2, 3/4 and 7/8 Holstein x Guzerat. Key words: β-lactoglobulin, crossbred cows, leptin, PCR-RFLP, PIT1, semi-arid.
Resumo:
Among the traits of economic importance to dairy cattle livestock those related to sexual precocity and longevity of the herd are essential to the success of the activity, because the stayability time of a cow in a herd is determined by their productive and reproductive lives. In Brazil, there are few studies about the reproductive efficiency of Swiss-Brown cows and no study was found using the methodology of survival analysis applied to this breed. Thus, in the first chapter of this study, the age at first calving from Swiss-Brown heifers was analyzed as the time until the event by the nonparametric method of Kaplan-Meier and the gamma shared frailty model, under the survival analysis methodology. Survival and hazard rate curves associated with this event were estimated and identified the influence of covariates on such time. The mean and median times at the first calving were 987.77 and 1,003 days, respectively, and significant covariates by the Log-Rank test, through Kaplan-Meier analysis, were birth season, calving year, sire (cow s father) and calving season. In the analysis by frailty model, the breeding values and the frailties of the sires (fathers) for the calving were predicted modeling the risk function of each cow as a function of the birth season as fixed covariate and sire as random covariate. The frailty followed the gamma distribution. Sires with high and positive breeding values possess high frailties, what means shorter survival time of their daughters to the event, i.e., reduction in the age at first calving of them. The second chapter aimed to evaluate the longevity of dairy cows using the nonparametric Kaplan-Meier and the Cox and Weibull proportional hazards models. It were simulated 10,000 records of the longevity trait from Brown-Swiss cows involving their respective times until the occurrence of five consecutive calvings (event), considered here as typical of a long-lived cow. The covariates considered in the database were age at first calving, herd and sire (cow s father). All covariates had influence on the longevity of cows by Log-Rank and Wilcoxon tests. The mean and median times to the occurrence of the event were 2,436.285 and 2,437 days, respectively. Sires that have higher breeding values also have a greater risk of that their daughters reach the five consecutive calvings until 84 months
Resumo:
The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure
Resumo:
The biodiesel is defined as the mono-alkyl ester derived from long-chain fatty acids, from renewable sources such as vegetable oils or animal fat, whose use is associated with the replacement of fossil fuels in diesel engine cycle. The biodiesel is susceptible to oxidation when exposed to air and this process of oxidation affects the quality of fuel, mainly due to long periods of storage. Because of this, the oxidation stability has been the focus of numerous researches since it directly affects the producers, distributors and users of fuel. One of the possibilities to increase the resistance of biodiesel is the autoxidation treatment with inhibitors of oxidation. The antioxidants can be used as potential inhibitors of the effects of oxidation on the kinematic viscosity and the index of acidity of biodiesel, thereby increasing oxidative stability. This work aims to examine the efficiency of antioxidants, α-tocopherol and butylated hydroxy-toluene (BHT), added the biodiesel content of remembrance through Pressurized-Differential Scanning Calorimetry (P-DSC), Thermogravimetry (TG) and Petrology. The results showed that the use of antioxidant BHT, at the concentration of 2000ppm, increased resistance to oxidation of the biodiesel and oxidative induction time (OIT), which is a better result as antioxidant than the α-tocopherol. With the thermogravimetric analysis, it was observed that the biodiesel presented an initial decomposition temperature of lower tendency than that of oil, demonstrating to be more volatile, bearing great similarity to the diesel and being characterized as an alternative fuel. The rheological analysis indicated that each sample of biodiesel behaved as a Newtonian fluid
Resumo:
The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition
Resumo:
Sweeteners provide a pleasant sensation of sweetness that helps the sensory quality of the human diet, can be divided into natural sweeteners such as fructose, galactose, glucose, lactose and sucrose, and articial sweeteners such as aspartame, cyclamate and saccharin. This work aimed to study the thermal stability of natural and artificial sweeteners in atmospheres of nitrogen and syntetic air using thermogravimetry (TG), derivative thermogravimetry (DTG), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). Among the natural sweeteners analyzed showed higher thermal stability for the lactose and sucrose, which showed initial decomposition temperatures near 220 ° C, taking advantage of the lactose has a higher melting point (213 ° C) compared to sucrose (191 ° C). The lower thermal stability was observed for fructose, it has the lowest melting point (122 °C) and the lower initial decomposition temperature (170 °C). Of the artificial sweeteners studied showed higher thermal stability for sodium saccharin, which had the highest melting point (364 ° C) as well as the largest initial decomposition temperature (466 ° C under nitrogen and 435 ° C in air). The lower thermal stability was observed for aspartame, which showed lower initial decomposition temperature (158 ° C under nitrogen and 170 ° C under air). For commercial sweeteners showed higher thermal stability for the sweeteners L and C, which showed initial temperature of thermal decomposition near 220 ° C and melting points near 215 ° C. The lower thermal stability was observed for the sweetener P, which showed initial decomposition temperature at 160 ° C and melting point of 130 °C. Sweeteners B, D, E, I, J, N and O had low thermal stability, with the initial temperature of decomposition starts near 160 °C, probably due to the presence of aspartame, even if they have as the main constituent of the lactose, wich is the most stable of natural sweeteners. According to the results we could also realize that all commercial sweeteners are in its composition by at least a natural sweeteners and are always found in large proportions, and lactose is the main constituent of 60% of the total recorded
Resumo:
The present work aims to study the theoretical level of some processes employed in the refining of petroleum fractions and tertiary recovery of this fluid. In the third chapter, we investigate a method of hydrogenation of oil fractions by QTAIM (Quantum Theory of Atoms in Molecules) and thermodynamic parameters. The study of hydrogenation reactions, and the stability of the products formed, is directly related to product improvement in the petrochemical refining. In the fourth chapter, we study the theoretical level of intermolecular interactions that occur in the process of tertiary oil recovery, or competitive interactions involving molecules of non-ionic surfactants, oil and quartz rock where oil is accumulated. Calculations were developed using the semiempirical PM3 method (Parametric Model 3). We studied a set of ten non-ionic surfactants, natural and synthetic origin. The study of rock-surfactant interactions was performed on the surface of the quartz (001) completely hydroxylated. Results were obtained energetic and geometric orientations of various surfactants on quartz. QTAIM was obtained through the analysis of the electron density of interactions, and thus, providing details about the formation of hydrogen bonds and hydrogen-hydrogen systems studied. The results show that the adsorption of ethoxylated surfactants in the rock surface occurs through the hydrogen bonding of the type CH---O, and surfactants derivatives of polyols occurs by OH---O bonds. For structures adsorption studied, the large distance of the surfactant to the surface together with the low values of charge density, indicate that there is a very low interaction, characterizing physical adsorption in all surfactants studied. We demonstrated that surfactants with polar group comprising oxyethylene units, showed the lowest adsorption onto the surface of quartz, unlike the derivatives of polyols
Resumo:
This work aims to study the effects of adding antioxidants, such as, α- tocopherol and BHT on the thermal and oxidative stability of biodiesel from cottonseed (B100). The Biodiesel was obtained through the methylical and ethylical routes. The main physical and chemical properties of cotton seed oil and the B100 were determined and characterized by FTIR and GC. The study of the efficiency of antioxidants, mentioned above, in concentrations of 200, 500, 1000, 1500, 2000ppm, to thermal and oxidative stability, was achieved by Thermogravimetry (TG), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Differential Scanning Calorimetry - Hi-Pressure (P-DSC) and Rancimat. The Biodiesel obtained are within the specifications laid down by Resolution of ANP No7/2008. The results of TG curves show that the addition of both antioxidants, even in the lowest concentration, increases the thermal stability of Biodieseis. Through the DTA and DSC it was possible to study the physical and chemical transitions occurred in the process of volatilization and decomposition of the material under study. The initial time (OT) and temperature (Tp) of oxidation were determined through the P-DSC curve and they showed that the α-tocopherol has a pro-oxidant behavior for some high concentrations. The BHT showed better results than the α-tocopherol, with regard to the resistance to oxidation
Resumo:
Vriesea minarum is a rupiculous bromeliad species, with naturally fragmented populations, restricted to the Iron Quadrangle, Minas Gerais, Brazil. It is a threatened species, which is suffering from habitat loss due to the growth of cities and mining activities. The knowledge of genetic variability in plant populations is one of the main branches of conservation genetics, linking genetic data to conservation strategies while the knowledge about plant reproductive biology can aid in understanding key aspects of their life story, as well as in the comprehension of their distribution and survival strategies. Thus, the study of diversity, richness, and genetic structure, as well as the reproductive biology of populations of V. minarum can contribute to the development of conservation actions. Chapter 1 presents the transferability of 14 microsatellite loci for V. minarum. Among the results of this chapter, we highlight the successful transferability of 10 microsatellite loci described for other species of Bromeliaceae, all of which are polymorphic. In Chapter 2, we present the genetic analyses of 12 populations of V. minarum that are distributed throughout the Iron Quadrangle. We used the 10 microsatellite loci tested in Chapter 1. The results show a low population structuring (Fst = 0.088), but with different values of genetic richness (mean = 2.566) and gene diversity (mean = 0.635) for all populations; and a high inbreeding coefficient (Gis = 0.376). These may be the result of pollinators action and/or efficient seed dispersal, thus allowing a high connectivity among populations of naturally fragmented outcrops. The reproductive biology and floral morphology of a population of V. minarum, located in the Parque Estadual da Serra do Rola-Moça, are studied in Chapter 3. This reserve is the only public environmental protection area where the species occurs. As a result of field experiments and observations, we found that the species has its flowering period from January to March, with flowers that last for two days and that it has a mixed pollination syndrome. It is primarily alogamous, but also has the capacity to be self-ferilized. It is expected that data obtained in chapters 1, 2 and 3 serve as basis for other studies with species from the ferruginous rocky fields, since until now, to our knowledge, there are no other survey of endemic species from the Iron Quadrangle, seeking to merge the genetic knowledge, with the data of the reproductive biology, with the ultimate aim of biodiversity conservation. Considering the great habitat loss for the species by mining, it becomes crucial to analyze the creation of new protected areas for its conservation
Resumo:
Dengue is considered as the most important arthropod-borne viral disease throughout the world due to the high number of people at risk to be infected, mainly in tropical and subtropical regions of the planet. The etiologic agent is Dengue Virus (DENV), it is a single positive-stranded RNA virus of the family Flavivirus, genus Flaviviridae. Four serotypes are known, DENV-1, DENV-2, DENV-3 and DENV-4. One of the most important characteristic of these viruses is the genetic variability, which demands phylogenetic and evolutionary studies to understand key aspects like: epidemiology, virulence, migration patterns and antigenic characteristics. The objective of this study is the genetic characterization of dengue viruses circulating in the state of Rio Grande does Norte from January 2010 to December 2012. The complete E gene (1485 pb) of DENV1, 2 e 4 from Brazilian (Rio Grande do Norte) patients was sequenced. Phylogenetic analysis was performed using MEGA 5.2 software, Tamura-Nei model and Neighbor-Joining trees were inferred for the datasets. In Brazil, there is just one DENV-1 genotype (genotype V), one DENV-2 genotype (Asian/American) and two DENV-4 genotypes (genotypes I and II). Brazilian strains of DENV-1 are subdivided in two different lineages (BR-I and BR-II), the Brazilian strains of DENV-2 are subdivided in four lineages (BRI-IV) and genotype II of DENV-4 is subdivided in three Brazilian lineages (BRI-III). The viruses isolated in RN belong to lineage BR-II (DENV-1), BR-IV (DENV-2) and BR-III (DENV-4).The Caribbean and near Latin American countries are the main source of these viruses to Brazil. Amino acids substitutions were detected in three domains of E protein, this makes clear the necessity of studies that associate epidemiological and molecular data to better understand the effects of these mutations. This is the first study about genetic characterization and evolution of Dengue viruses in Rio Grande do Norte, Brazil
Resumo:
The monitoring of Earth dam makes use of visual inspection and instrumentation to identify and characterize the deterioration that compromises the security of earth dams and associated structures. The visual inspection is subjective and can lead to misinterpretation or omission of important information and, some problems are detected too late. The instrumentation are efficient but certain technical or operational issues can cause restrictions. Thereby, visual inspections and instrumentation can lead to a lack of information. Geophysics offers consolidated, low-cost methods that are non-invasive, non-destructive and low cost. They have a strong potential and can be used assisting instrumentation. In the case that a visual inspection and strumentation does not provide all the necessary information, geophysical methods would provide more complete and relevant information. In order to test these theories, geophysical acquisitions were performed using Georadar (GPR), Electric resistivity, Seismic refraction, and Refraction Microtremor (ReMi) on the dike of the dam in Sant Llorenç de Montgai, located in the province of Lleida, 145 km from Barcelona, Catalonia. The results confirmed that the geophysical methods used each responded satisfactorily to the conditions of the earth dike, the anomalies present and the geological features found, such as alluvium and carbonate and evaporite rocks. It has also been confirmed that these methods, when used in an integrated manner, are able to reduce the ambiguities in individual interpretations. They facilitate improved imaging of the interior dikes and of major geological features, thus inspecting the massif and its foundation. Consequently, the results obtained in this study demonstrated that these geophysical methods are sufficiently effective for inspecting earth dams and they are an important tool in the instrumentation and visual inspection of the security of the dams
Resumo:
Brazil has about 8,500 km of coastline and on this scale, fishing is a historically important source of animal protein for human consumption. The national fishing background shows a growth of marine fishery production until 1985 and within this period it was recorded a steady decline. From the year 2003 fishing statistics aim to some "recovery" of the total fisheries production, which probably is related to a change in industry practice. The target of commercial fishing became smaller species with low commercial value, but very abundants. The coney, Cephalopholis fulva (Serranidae), is one of these species that have been suffering a greater fishing pressure in recent years. In order to provide data about the current situation of the genetic diversity of these populations, several molecular markers have been being used for this purpose. The prior knowledge of genetic variability is crucial for management and biodiversity conservation. To this end, the control region sequences (dloop) of mtDNA from Cephalopholis fulva (Serranidae) from five geographical points of the coast of Brazil (Ceará, Rio Grande do Norte, Bahia and Espírito Santo) and the Archipelago of Fernando de Noronha (FN) were sequenced and their genetic diversity analyzed. The FST values were very low (0.0246 to 0.000), indicating high gene flow between the sampled spots. The indices h and indicate a secondary contact between previously allopatric lineages differentiated or large and stable populations with long evolutionary history. Tests of Tajima and Fu showed expansion for all populations. In contrast, the mismatch distribution and SSD indicated expansion just for coastal populations. Unlike other species of the Atlantic which have been deeply affected by events on later Pleistocene, the population-genetic patterns of C. fulva may be related to recent events occurred approximately 130,000 years ago. Moreover, the data presented by geographical samples of the specie C. fulva showed high genetic diversity, also indicating the absence of deleterious effects of over-exploitation on this specie, as well as evidence of complete panmixia between all sampled populations